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Jean-Jacques Orban de Xivry,1* Sébastien Coppe,1* Gunnar Blohm,2,3 and Philippe Lefèvre1

1Institute of Information and Communication Technologies, Electronics, and Applied Mathematics and Institute of Neuroscience, Université catholique de
Louvain, B-1348 Louvain-La-Neuve, Belgium, 2Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada, K7L 3N6, and 3Canadian
Action and Perception Network, Toronto, Ontario, Canada, M3J 1P3

The brain makes use of noisy sensory inputs to produce eye, head, or arm motion. In most instances, the brain combines this sensory
information with predictions about future events. Here, we propose that Kalman filtering can account for the dynamics of both visually
guided and predictive motor behaviors within one simple unifying mechanism. Our model relies on two Kalman filters: (1) one processing
visual information about retinal input; and (2) one maintaining a dynamic internal memory of target motion. The outputs of both Kalman
filters are then combined in a statistically optimal manner, i.e., weighted with respect to their reliability. The model was tested on data
from several smooth pursuit experiments and reproduced all major characteristics of visually guided and predictive smooth pursuit. This
contrasts with the common belief that anticipatory pursuit, pursuit maintenance during target blanking, and zero-lag pursuit of sinu-
soidally moving targets all result from different control systems. This is the first instance of a model integrating all aspects of pursuit
dynamics within one coherent and simple model and without switching between different parallel mechanisms. Our model suggests that
the brain circuitry generating a pursuit command might be simpler than previously believed and only implement the functional equiv-
alents of two Kalman filters whose outputs are optimally combined. It provides a general framework of how the brain can combine
continuous sensory information with a dynamic internal memory and transform it into motor commands.

Introduction
In less than a quarter of a second, the motion of a tennis ball hit by
an opponent elicits smooth pursuit eye movements with appro-
priate speed and direction. This is despite very noisy motion
information provided to the pursuit system by motion-sensitive
areas (Osborne et al., 2005, 2007). To overcome this noise, the
brain integrates stimulus information over time across large pop-
ulations of neurons (Treue et al., 2000), which improves the re-
liability of sensory information (Snowden and Braddick, 1991;
Perrett et al., 1998). How exactly this integration of information
occurs and how it contributes to the movement dynamics remain
unknown. To fill this gap, we propose a new model for the sen-
sory estimation of visual motion signals through Kalman filtering
(Kalman, 1960) and show as a proof-of-concept that such a sim-

ple mechanism can reproduce many seemingly unrelated find-
ings regarding the control of smooth pursuit eye movements.

The smooth pursuit system also relies on prediction of target
motion to overcome sensory processing delays and to accurately
follow the target. Predictive smooth pursuit can be observed dur-
ing sinusoidal pursuit in which the phase lag between eye and
target velocity is almost zero (Dallos and Jones, 1963). They are
present before target motion onset in which the eyes start to move
smoothly before the start of expected target motion (Barnes and
Asselman, 1991). They are found during the transient disappear-
ance of a moving target in which eye velocity is maintained at
non-zero values and is predictively increased before target reap-
pearance (Bennett and Barnes, 2003; Orban de Xivry et al., 2006;
Coppe et al., 2012). These different aspects of predictive smooth
pursuit have been viewed as different predictive systems (i.e.,
short-term vs long-term prediction; Barnes, 2008) that are be-
lieved to be mechanistically very different from visually guided
smooth pursuit. How the visual and predictive signals are com-
bined in the brain remains essentially unknown. Previous models
combine the visually guided and predictive smooth pursuit re-
sponses by means of an artificial switch mechanism (Barnes,
2008). In addition, those models were purely deterministic while
the brain has to deal with noisy sensory and internal signals.

Here, we specifically designed a model describing sensory and
memorized motion processing of noisy sensory inputs and tested
its principles for smooth pursuit eye movements. Our model is
based on two Kalman filters: (1) one estimating retinal motion
for visually guided movements; and (2) one computing a dy-
namic internal representation of target motion (Orban de Xivry
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et al., 2008) for predictive movements.
The measure of uncertainty associated
with sensory and predictive signals is used
to combine those signals in a statistically
optimal way (Ernst and Banks, 2002;
Vaziri et al., 2006; Ronsse et al., 2009). The
emerging properties of our stochastic
model account for several aspects of pur-
suit dynamics, but similar mechanisms
could be at play in controlling predictive
and sensory-driven movements of other
effectors, such as the arm or head.

Materials and Methods
Global structure
The model aims at estimating the current retinal slip (RS) through two
different mechanisms: (1) Kalman filtering of noisy (delayed) sensory
inputs; and (2) prediction of future RS. In Kalman filtering, noisy sensory
inputs are combined with the previous estimate of RS to refine this esti-
mation. Noisy sensory inputs are delayed by 80 ms (Krauzlis and Lis-
berger, 1994). The predicted RS is obtained from an efference copy of eye
velocity and an internal representation of target motion (obtained from
memory if available). Estimated and predicted values of the RS are then
combined in a statistically optimal manner (Bayesian integration) and
processed similarly as in previous models. We will develop the details of
the model below.

More specifically, the general structure of the model is shown in Figure
1. The model takes target velocity as its input and produces eye velocity as
its output. The model consists of three main parts. (1) Visual processing

computes an estimation of the sensory RS (RŜ Sens) and its associated
uncertainty (� Sens) from target and eye motion signals. (2) The internal

representation block computes a prediction of the estimated RS (RŜ Mem)
and an estimate of its uncertainty (� Pred) based on past information

about target motion (TV̂k
Mem) and the current estimation of the eye ve-

locity (coming from an efference copy). In some cases, there is nothing
stored in the memory and a default internal representation is used in-
stead (see below). (3) The motion pathway produces the motor com-
mand, using both sensory and predicted RSs, weighted by their
uncertainty (Bayesian integration).

The processing of the motor command is a simplified version of clas-
sical pursuit models (Krauzlis and Lisberger, 1994). It is transmitted to
the premotor system, which includes a pathway with a gain element T1

and a second parallel pathway with a neural integrator. Its output is sent
to both the eye plant producing the eye velocity signal and an internal
model that predicts the eye velocity that will be produced by these motor
commands. The internal estimation of future eye velocity is combined
with the estimation of the sensory RS and stored in memory to compute
the internal representation of target motion for the future trials. The eye
plant approximates the dynamics of the eyeball, the extraocular muscles,
and the tissues that surround them. Its transfer function is composed of
a second-order function, with time constants T1 and T2 fixed to 170 and
13 ms (Robinson, 1976; Zee and Robinson, 1979; Robinson et al., 1986).
There is no noise added to the eye plant (no motor noise simulated).

Sensory pathway
The noisy RS as input. The RS is estimated from the slip of the image of the
target on the retina, i.e., by subtracting eye velocity from target velocity
(Fig. 2). Information about RS appears to be noisy (Osborne et al., 2005,
2007; Stein et al., 2005; Osborne and Lisberger, 2009; Gold and Wa-
tanabe, 2010). In the middle temporal area (MT), some neurons are
tuned for speed (Maunsell and Van Essen, 1983; Nover et al., 2005). The
tuning curves are broader for neurons coding higher speed (Maunsell
and Van Essen, 1983; Nover et al., 2005). Therefore, representation of
higher speed might be more variable than lower speed.

To obtain a noisy sensory input, we computed the actual RS (RS det)
and added both additive and multiplicative noise to the signal. With this
simplified computation, we make the assumption that the problem of
motion integration is solved. A Bayesian account of the motion integra-
tion stage has been proposed in other studies (Dimova and Denham,
2009; Bogadhi et al., 2011). Additive noise was used to specify a baseline
sensory noise level, and multiplicative noise was used to simulate signal-
dependent noise (Harris and Wolpert, 1998). This resulted in the follow-
ing expression:

RSk
Noisy � RSk

det � �multRSk
det � �add, (1)

Figure 1. Global structure of the model. Sensory pathway (red): visual processing uses the noisy target velocity and eye velocity to compute an estimation of the sensory RS (RŜ Sens) and its

uncertainty (� Sens). Predictive pathway (blue): the internal representation block constructs a prediction of the estimated RS (RŜ Mem) and an estimate of its uncertainty (� Pred) from past sensory
information and the current estimation of the eye velocity (coming from efference copy and an internal model of the eye; Ghasia et al., 2008). The motion integration step generates the motor
command, using both sensory and internal RSs. This command is sent to the premotor system and then to the eye plant.

Figure 2. Visual processing pathway. Eye velocity and target velocity are compared to compute the RS (RS det; Eq.1). Multipli-
cative and additive Gaussian noises are then added to generate the sensory signals sent to the pursuit system, before a Kalman filter

estimates the sensory RS, RŜ Sens.
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with RS det the deterministic value of RS (current target velocity minus
current eye velocity), �add �N(0, �sens,add

2 ), and �mult �N(0, �sens,mult
2 ).

This noisy signal was then processed (visual processing box in Fig. 1) to

obtain an estimate of the RS (RŜ Sens).
Generative model of the sensory world. To compute an optimal estimate

of the sensory RS through Kalman filtering, a generative model about the
evolution and observation of this variable is needed. In this framework,
the evolution of the RS signal is described as a random walk by the
following equation:

RSk � 1
Sens � RSk

Sens � �k, (2)

where RS Sens represents the internal estimate of the RS, and �k is an
additional process noise with �k �N(0, Q 2) representing the state
variability.

In addition, the brain gets some observation of RS Obs that represents a
noisy version of RS Sens:

RSk
Obs � RSk

Sens � �kRSk
Sens � vk, (3)

where �k and vk are the multiplicative and additive measurement noises
with �k �N(0, D 2) and vk �N(0, R 2). Equations 2 and 3 represent the
generative model. The noise characteristics (Q, D, and R) of the genera-
tive model are critical for the implementation of the Kalman filter (see
below, Eqs. 5, 6).

Optimal estimation of the sensory RS. This section details the actual
implementation of the Kalman filter that is used to estimate the sensory
RS. The Kalman filter aims at estimating a hidden variable from a noisy
input. In our simulations, the observed input is RS Noisy computed fol-
lowing Equation 1. We hypothesize that �sens,mult and �sens,add (Eq. 1) are
equal to D and R (Eq. 3). That is, the brain knows the statistics of the noise
that perturbs the retinal signal, which is required to tune the Kalman
filter. However, an exact knowledge of those noise parameters is not
crucial, as we will discuss at the end of Results (Beck et al., 2012).

Given the observed value of the RS (RSk
Noisy) and the previous estimate of

the RS (RŜk
Sens) and given the knowledge of the dynamics of the system (Eq. 2)

and the statistics of the noise in the sensory input (Eq. 3), an optimal estimate of
the RS on the next time step can be obtained through Kalman filtering:

RŜk � 1
Sens � RŜk

Sens � Kk(RSk
Noisy � RŜk

Sens) � 	k, (4)

where RSk
Noisy is the noisy signal of RS observed by the brain at time k

(with a sensory delay of 80 ms), and 	t is the internal noise of the esti-
mation with 	t �N(0, �n

2).
Following Kalman theory and because the different noises are Gauss-

ian and uncorrelated, the optimal value for Kk can be computed as fol-
lows (Todorov, 2005; Izawa et al., 2008):

Kk � �k
Sens(�k

Sens � R 2 � D 2(�k
Sens � RŜk

Sens RSk
SensT)D 2T

) � 1,

(5)

with

�k � 1
Sens � Q 2 � �n

2 � (1 � Kk)�k
Sens, (6)

where �k
Sens is the estimated error variance. This estimation will be used

to assess the uncertainty associated with the estimation of RŜk
Sens.

Predictive pathway
One hundred fifty milliseconds into the future. The output of the predictive
pathway corresponds to the measured RS that is expected 150 ms later if
eye velocity did not change. This 150 ms period gives the predictive
pathway an advance of 70 ms with respect to the actual RS. The remain-
ing 80 ms compensate for the visual feedback delays. Target velocity is
computed through Kalman filtering in a way similar to the estimation of
RS. To do so, we also need current eye velocity (ėk

eff) from an efference
copy signal that can be estimated through an internal model of the eye
plant (Skavenski and Robinson, 1973; Robinson, 1981). Therefore, the
output of the predictive pathway at time k is:

RŜk
Mem � TV̂k

Mem � ėk
eff, (7)

where TV̂k
Mem represents the predicted target velocity that is stored

in memory with an advance of 150 ms (to see how it is computed, see
Eq. 14).

Noisy target velocity as input. In the absence of visual information (e.g.,
blanking of the target), there is good evidence suggesting that a predic-
tion of future target motion can be used to drive the smooth pursuit
system (for review, see Barnes 2008). In our model, the predictive path-
way receives noisy target velocity as an input:

TVk
Noisy � TVk � 
multTVk � 
add, (8)

where TV is the actual value of target velocity, 
add �N(0, �pred,add
2 ), and


mult �N(0, �pred,mult
2 ). The actual value of TVk is not available to the

system and is approximated by summing RŜk
Sens and ėk

eff.
Generative model of target motion. To compute an optimal estimate of

target velocity through Kalman filtering, a generative model about the
evolution and observation of this variable is needed. This model repre-
sents the current knowledge of the statistics of the target velocity, i.e.,
how target velocity will evolve over time:

TVk � 1
Pred � TVk

Pred � Bint uk � �k, where uk � �(TV̂k
Mem),

(9)

where TVk
Pred is target velocity, and uk represents the change in velocity

from time k to k � 1 that is computed from the best prediction of target
motion currently available (see Eq. 14), with �k �N(0, Qpred

2 ) being the
process noise and Bint � 1.

The predicted dynamics of target velocity (Eq. 8) has an addi-
tional term (uk) compared with the dynamics for RS (Eq. 2). This term
represents the knowledge that future target velocity will vary with
time. The control signal uk represents the expected change (i.e., com-
puted from memory) in target velocity from time k to time k � 1
(Eq. 9).

As in Equation 3, the internal prediction of target motion needs to be
compared with the actual value of target velocity. We hypothesize that
the brain knows this observation is corrupted by noise, thus

TVk
Obs � TVk � �k TVk � 
k, (10)

with 
k �N(0, Rpred
2 ) and �k �N(0, Dpred

2 ), the additive and multiplica-
tive noises.

Optimal estimation of target motion. This section details the actual
implementation of the Kalman filter that is used to estimate target mo-
tion. The Kalman filter aims at estimating target motion from a noisy
input. This estimate of target motion is not used during the current trial
but is stored in memory (Fig. 1) and will be used for the next trial (see
below, Eq. 14).

In our model, the observed input is TV Noisy that is computed follow-
ing Equation 8. It is again hypothesized that �pred,add � Rpred and
�pred,mult � Dpred.

Given the observed target motion (TVk
Noisy) and its estimate (TV̂k

Pred)
and given the knowledge of the different noise statistics (Rpred, Dpred, and
Qpred), target motion can be estimated in a statistically optimal manner.

The internal representation TV̂k
Pred is updated thanks to the observation

TVk
Noisy through Kalman filtering:

TV̂k � 1
Pred � TV̂k

Pred � Bint uk � Kk
Pred(TVk

Obs � TV̂k
Pred) � 
k,

(11)

Kk
Pred � �k

Pred(�k
Pred � Rpred

2 � Dpred
2 (�k

Pred

� TV̂k
Pred TV̂k

PredT)Dpred
2 T) � 1, (12)

where TV̂k
Pred is the predicted target velocity at time k computed by the

Kalman filter, and 
k �N(0, �e
2) is the internal noise. The uncertainty

� Pred is given by the following:
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�k � 1
Pred � Qpred

2 � �e
2 � (1 � Kk

Pred).

(13)

The variance of the prediction �k
Pred will be

used to combine predicted and observed RSs in
the motion pathway (see below).

Using optimal estimate in the next trial. Be-

cause TV̂k
Mem tries to anticipate the target mo-

tion 150 ms into the future, it has to rely on past
experience, e.g., from previous trials. Thus,

current estimates of TV̂k
Pred (Eq. 11) are only

used to improve the internal representation of
target motion for the next trials but not the
current trial. As a result, the model learns and
improves its internal estimation of target trajectory over consecutive
trials. That is, the estimated target motion at trial j is used as the internal
prediction of target motion at trial j � 1, with some noise:

�TV̂k
Mem)Trial j � 1 � (TV̂k � 150

Pred )Trial j (1 � �mult
Pred) � �add

Pred,

(14)

where �mult
Pred �N(0, Intmult

2 ) and �add
Pred �N(0, Intadd

2 ). The content of the
memory is used to drive smooth pursuit after combination with the
output of the sensory pathway (see below). It is also used to build the in-
ternal representation of target motion that will be used on the next trial
(Eq. 11).

When simulating the first appearance of a moving target, a default internal
representation will be used (i.e., with value zero for the first 150 ms and

directly based on RŜSens after that period). That is, RŜk
Mem � RŜk � 80

Sens , which
represents a short-term extrapolation of future target motion to compensate
the sensory delay.

Motion pathway. The inputs of the motion pathway come from two
different sources of information [Fig. 3: sensory (i.e., retinal) and inter-
nal (i.e., extraretinal) signals]. These two sources of information are
weighted in function of their estimated variability (� Sens and � Mem) in a
Bayesian way. We approximated � Mem by � Pred because we noticed that
� Pred did not vary a lot from trial to trial. The optimal weighting of such
stochastic variables (Ernst and Banks, 2002; Vaziri et al., 2006) is given by
the following:

RŜk �
�Pred

�Pred � �Sens
RŜk

Sens �
�Sens

�Pred � �Sens
RŜk

Mem.

(15)

The model needs an initial condition for the uncertainty of the sensory
and internal signals. This initial condition is based on previous experi-
ence. At movement onset, the visual feedback will be favored if the inter-
nal representation is absent or inaccurate (� Pred is large). Practically, this
is implemented by increasing the value of Q Pred (the process noise),
which will increase the noise of the internal representation and then favor
sensory information. Changing the initial conditions given to the sensory
variance (e.g., after target disappearance � Sens � 	 as a result of the
absence of retinal feedback) can thus lead to an abrupt change of relative
weighting between sensory and internal signals.

In the final steps of our model, the weighted RŜ signal is sent to a
pathway similar to the “image velocity motion pathway” from Krauzlis
and Lisberger (1994). This velocity motion pathway (Fig. 3) contains a
linear function (Gv), a second-order filter (Hv), and a gain element (Av).
The parameters we used were similar to those used by Krauzlis and
Lisberger (1994) and were equal to the following:

Gv(u) � 7u, (16)

Hv�s
 �
352

s2 � 2 � 0.8 � 35 � s � 352, (17)

Av � 0.9 (18)

The output of this image velocity motion pathway was then sent to a
(leaky) integrator (called “positive efferent copy feedback loop” by
Krauzlis and Miles, 1996) that is characterized by two variables: Gint and
�. Gint determines the gain of the pursuit system (gain �Gint

2). It is set to
�Gint during visually guided smooth pursuit to 0 when the target stops
moving or disappears and is modulated around an intermediate value
when the target disappears but is expected to reappear (transient blank-
ing). � represents the time constant of the filter that is required to main-
tain eye velocity when RS � 0 (� � 100 ms). The linear gain element was

set to Ge �
1

�
.

In the present model, the memory used for prediction stores a repre-
sentation of target motion, which is dynamically updated by the Kalman
filter based on past information. This contrasts with models in which
short-term memories store efferent copies of eye motor commands that
are replayed to replace the retinal information for predictive pursuit
(Krauzlis and Miles, 1996; Bennett and Barnes, 2003; Madelain and
Krauzlis, 2003). Therefore, the motion pathway is active during both
visually guided pursuit and in the absence of retinal signals.

Simulation parameters. Our model was implemented in MATLAB/
Simulink (Mathworks). We ran all simulations with a fixed step size of
1 ms using the fourth-order Runge–Kutta method from Simulink
(MATLAB) for numerical integration.

The SD of the different stochastic variables (Eq. 1) was tuned to pro-
duce a qualitatively correct pursuit response in a wide variety of contexts.
Note that the set of used parameters represents only one possible choice
inside a large manifold. Parameters were kept constant for all stimula-
tions. The variances of the additive and multiplicative noise of the sen-
sory signals were set to �sens,add � 10, �sens,mult � 1.5 (Eq. 1). In most
instances (except for the sensitivity analysis; see Fig. 14), the variances of
the additive and multiplicative noise fed to the Kalman filter matched the
actual variances: R � �sens,add and D � �sens,mult. For the predictive
pathway, these values were decreased by a factor 2: �pred,add � 5 and
�pred,mult � 0.75 (Eq. 8) and R Pred � �pred,add and D Pred � �pred,mult (Eq.
10). The noise of the Kalman estimation was the same for the sensory and
predictive Kalman filters: �n � �e � 0.3 (Eqs. 4, 11). From trial to trial,
the internal representation of target motion was slightly corrupted with
additive (Intadd � 1) and multiplicative Gaussian noises (Intmult � 0.1;
Eq. 14) to simulate memory decay. Initial conditions of noise variances
were set to � Sens � 1 and � Pred � 1. None of these parameters changed
during simulations; Bint � 1 (Eq. 9).

For all trials in which no predictions were available (Figs. 4, 5, first
half-cycle in Fig. 6, first pursuit trial in Fig. 8), the noises for the system
dynamics (Q and Q Pred) of RS and TV were set to 1 (Eq. 9). For other
trials when target motion prediction was available (Fig. 6 for all half-
cycles except the first one, Figs. 7, 8 for all pursuit trials except the first
one, Figs. 9, 10), the noise added to the dynamics of the system for TV
(Eq. 9) was reduced (Q Pred � 0.3) because we assumed that the knowl-
edge about target velocity decreased the associated uncertainty.

In simulations or human data, pursuit onset was detected by fitting
(mean least squares regression) a piece-wise linear function on the eye
velocity trace measured during an interval of 300 ms starting at stimulus
onset, as follows:

Figure 3. Motion pathway. Sensory and predictive RS are weighted according to their uncertainty and give the estimated RS (

RŜk). This signal is processed by a classical pursuit model (velocity motion pathway from Krauzlis and Lisberger, 1994). The output
is then sent to a (leaky) integrator.
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f�t
 � �A if t � T
B �t � T
 if t � T ,

where t is the time (seconds), T is the time of pursuit onset (seconds), A
is the level of eye velocity before pursuit onset (degrees per second), and
B is the mean acceleration during pursuit initiation (degrees per square
seconds). The constants A, B, and T were considered as the free param-
eters of the function.

For sinusoidal pursuit (Fig. 7), the pursuit gain for a half-cycle was
computed as the peak eye velocity divided by the peak target velocity. The
phase was obtained as the difference in time (expressed in angular de-
grees) between those two peaks.

When the target was blanked (Figs. 10 –12), we set � Sens � 	, because
there was no more visual input to the sensory system. This choice allows
us to cancel any influence of the visual pathway on smooth pursuit re-

sponse during target blanking. Therefore, we have RŜ � RŜk
Pred during

this period of time. During blanking, the noise values for TV̂k (Eq. 14)
increased linearly as the estimation of the target became more uncertain
with time evolving. At time X (in seconds after target disappearance),
Int

mult
and Intadd were both multiplied by (1 � X ) because we hypothe-

sized that uncertainty should increase when there is no sensory feedback
(Wei and Körding, 2010). To simulate the predictive recovery of eye
velocity, Gint was increased linearly from a time T that was randomly
chosen between 50 and 250 ms before target reappearance. The slope of

this increase was equal to
�1 � Gint


2 T
.

Results
The Kalman filtering approach allows us to simulate smooth pur-
suit behavior in a wide variety of contexts that range from purely
visually guided pursuit to purely predictive pursuit in the absence
of any visual input. In the first part of Results, we will describe
how the sensory Kalman filter can account for visually guided
smooth pursuit dynamics. Then, we will show how our approach
of predictive pursuit allows us to unify the different aspects of
predictive smooth pursuit within one simple mechanism, i.e.,
pursuit during sinusoidal motion, anticipatory pursuit before
target motion onset, and pursuit during transient target disap-
pearance. Finally, we will demonstrate that our simulations are
very robust to changes in the parameters of the Kalman filter.

Simulations of visually guided pursuit: comparison with
human data
The model performance in response to the sudden motion of a
visible target is illustrated in Figure 4A. After a fixation period
(�500 ms), the target underwent a “step ramp” motion (20°/s).
Different simulations are shown in gray, showing the variability
of the model output attributable to the simulated sensory noise.

One of the feature landmarks of pursuit initiation is a very ste-
reotypical initial acceleration component (Lisberger et al., 1981; Carl
and Gellman, 1987; de Brouwer et al., 2002). Therefore, we analyzed
pursuit acceleration as predicted by the model by simulating differ-
ent target velocity steps. We compared the simulated results with
experimental results from human subjects (data were reanalyzed
from de Brouwer et al., 2002). This comparison is shown in Figure
4B. We measured the acceleration as the mean acceleration in the
interval between 80 and 180 ms after pursuit onset (see Materials and
Methods). Note that this model did not contain a specific saturation
function for pursuit acceleration, as was the case in previous models
(Bennett and Barnes, 2003, 2006). Despite the absence of an explicit
saturation function, the model simulations closely matched smooth

Figure 4. Simulations of visually guided pursuit initiation. A, Simulations of pursuit velocity (in gray). Target velocity (20°/s) is represented by the black dashed line. B, Relationship between
sensory RS and mean eye acceleration in the interval between 80 and 180 ms after pursuit onset. Gray squares correspond to experimental data from the dataset of de Brouwer et al. (2002). Black
disks correspond to simulation data (average of 30 simulations). SD is shown with vertical bars.

Figure 5. Comparison with previous models. Initiation of pursuit in response to targets
moving at 5, 10, 20, and 30°/s. Target velocity is represented in blue, simulations from the
model of Robinson et al. (1986) are shown in continuous black traces, simulations from the
model of Krauzlis and Lisberger (1994) are shown in dashed black traces, and simulations from
our model are shown in red (average over 30 simulations).
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pursuit acceleration in humans for values of RS up to 50°/s and also
exhibited a saturation effect of acceleration at �150°/s2. This satu-
ration arises from the signal-dependent noise that perturbs the sen-
sory input.

The latency of the pursuit response was 120 � 14 ms (mean �
SD). These values were similar to those measured by Tarnutzer et
al. (2007) and Rasche and Gegenfurtner (2009). The SD observed
when initiating pursuit at 20°/s (500 ms after target onset) was
�2°/s (10%). This value was also similar to those observed in
previous studies (Osborne et al., 2005; Rasche and Gegenfurtner,
2009). Thus, our new model reproduced human visually guided
pursuit dynamics with high fidelity only using a simple Kalman
filter mechanism.

Simulations of visually guided pursuit: comparison with
previous models
To directly compare our model predictions to previously pub-
lished models, we simulated two classical models in Figure 5

(Robinson et al., 1986; Krauzlis and Lisberger, 1994). Simula-
tions of pursuit initiation to a target moving at a constant
velocity generated with the pursuit model of Robinson et al.
(1986) were very similar to those produced with the pursuit
model of Krauzlis and Lisberger (1994); pursuit acceleration
and the overshoot at the end of the initiation phase were com-
parable. Our model did not reproduce the ringing behavior
present in these previous models. However, our model ap-
pears consistent with many recent studies that did not exhibit
a clear ringing behavior (Orban de Xivry et al., 2006; Spering
and Gegenfurtner, 2007; Medina and Lisberger, 2009). It is very
likely that the context of the experiments plays a major role
in this ringing behavior (e.g., repetition of similar target
trajectories).

It is worth noting that the current pursuit model does not
contain an “image acceleration motion pathway,” as was the
case in previous models (Krauzlis and Lisberger, 1994; Krauz-
lis and Miles, 1996). This image acceleration motion pathway
was necessary in these previous models to generate persistent
oscillations of eye velocity during sustained pursuit and to
avoid large overshoots at the end of the pursuit initiation
phase. In our model, it is not necessary because the weight of
the signals from the predictive pathway increases after pursuit
initiation. The predictive pathway limits the overshoot at the
end of pursuit initiation (because the predictive system uses an
estimation of the RS with an advance of 150 ms, predictive
pursuit velocity will not overshoot target velocity).

Simulations of smooth pursuit in response to a sinusoidally
moving target
Tracking a sinusoidally moving target results in a smaller
phase lag than when tracking unpredictable target motion
(Dallos and Jones, 1963; Yasui and Young, 1984; Barnes et al.,
1987, 2000; Barnes and Ruddock, 1989) because the smooth
pursuit system can exploit the predictable nature of target
motion. Our model can achieve such small phase lags by using
the memory acquired during half a cycle of target motion as an
internal representation of future target motion for the next
half-cycle. As can be observed in Figure 6, initially, there is no
internal representation of future target motion (first half-
cycle). During this period, the model relies solely on sensory

signals (RŜ Sens), with a sensorimotor delay of 80 ms and lags
behind the target (Fig. 6). Then, target motion estimated dur-
ing this period is used as an internal representation of target
motion for the second half-cycle. This internal representation

Figure 6. Simulation of smooth pursuit velocity (gray traces) when tracking a target (dashed black line) moving with a sinusoidal velocity, with peak velocity of �6.7°/s and frequency of 0.4 Hz.

Figure 7. Pursuit gain and phase lag as a function of the frequency of the sinusoidal moving
target. Model predictions are represented by the gray disks. Data were obtained by averaging
30 different simulations over three half-cycles (from the 4th to the 6th half-cycle). Experimental
data (black dashed lines) are adapted from Barnes et al. (1987) (their Fig. 2).
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will be gradually refined over time with each cycle of target
motion. For all ensuing half-cycles, the estimated target mo-
tion obtained during one half-cycle is retrieved during the
next one. The use of this internal representation yielded a
dramatic decrease in the phase lag to levels comparable with
experimental observations [phase lag �10° for low frequen-
cies (�0.4 Hz); for review, see Barnes, 2008], and the pursuit
gain was close to 1.

After several such cycles, the phase lag and pursuit gain
reached similar levels to those reported in human subjects. We
quantified this behavior in Figure 7, comparing the pursuit
gain and phase lag from our model to the ones measured
experimentally in Barnes et al. (1987). Our model closely
matched the experimental findings without any change in
parameters.

Simulations of anticipatory pursuit before target
motion onset
Building an internal representation of target motion from past
experience is advantageous for tracking sinusoidally moving tar-
gets but also for anticipating future target motion. Indeed, it is
well established that, when the direction of target motion and the
timing of its onset are known, subjects are able to move their eyes
before target onset (Kowler and Steinman, 1979a,b). Similarly, in
our model, after a few trials of repeated identical target motion,
the memory contains enough information to construct a reliable
internal representation of the future target velocity. Therefore,
the model exhibits anticipatory pursuit responses to the expected
future target motion, i.e., the eyes start moving before target
motion onset. Figure 8A illustrates a reactive pursuit response at
first target presentation with visually guided eye movements, and
Figure 8B–D shows anticipatory eye movements in consecutive
trials using the prediction of the future target velocity (attribut-
able to the internal memory Kalman filter estimating target mo-
tion 150 ms into the future). As can be observed in Figure 8, there
was a marked increase of anticipatory pursuit over the course of
trials. In our model, anticipation arises from the use of the inter-
nal representation of target motion stored in memory that is
replayed with an advance of 150 ms.

The update of the internal representation of target motion
after each trial will also naturally lead to a “history effect” (Kowler
et al., 1984). This effect is observed when target motion varies
from trial to trial and results in a weighted average of target mo-
tion from multiple previous trials in the internal memory. As a
consequence of this history effect, anticipatory eye velocity will be
stronger after two consecutive trials with fast target motion than
after one trial with low and one trial with fast target motion
(Poliakoff et al., 2005). Thus, our model was able to capture all
aspects of anticipatory smooth eye movements thanks to an in-
ternal representation of target motion that was refined over the
course of trials by a Kalman filter.

Simulations of learning by observation
The building of the internal representation can be achieved with-
out any eye movements. Indeed, it is known that anticipatory
smooth pursuit eye movements can arise after viewing but not
pursuing a moving target (Barnes et al., 1997). In our model, eye
movements can be inhibited during target motion by setting Gint

to 0. After viewing a moving target three times, the internal rep-
resentation that was built can give rise to a clear predictive
smooth pursuit response (Fig. 9, solid black line). This predictive
response differs from the pursuit response observed in the ab-
sence of an internal representation (Fig. 9, dashed line).

Simulations of smooth pursuit during target blanking
Another important instance of predictive smooth pursuit eye
movements can be observed when the moving target is tempo-
rarily blanked for several hundred milliseconds (Orban de Xivry
and Lefèvre, 2007; Orban de Xivry et al., 2008). We simulate this
case of predictive pursuit in Figure 10 in a 1 s target blanking
paradigm.

As in human subjects, simulated eye velocity decreased after
target blanking until reaching an asymptotic velocity plateau.
Both � and Gint in the motion pathway (Fig. 3) determine the rate
at which pursuit velocity decays toward the residual velocity pla-

teau (Becker and Fuchs, 1985). The time constant is
�

1 � Gint
,

which in our case results in a time constant of 200 ms for � � 100

Ve
lo

ci
ty

 2
0 

de
g/

s

 0.5 s

Ve
lo

ci
ty

 2
0 

de
g/

s

Ve
lo

ci
ty

 2
0 

de
g/

s

Ve
lo

ci
ty

 2
0 

de
g/

s

Simulations

Target

TVPred

TVMem

1st trial

2nd trial

3rd trial

4th trial

A

B

C

D

Figure 8. Anticipatory pursuit eye movements based on the learning of past motion trajec-
tories. Dashed black traces represent target velocity. The estimation of target velocity given by
the internal Kalman filter (TV Pred) is shown in red. The internal representation of target velocity
that comes from the previous trial (TV Mem) is shown in blue. TV Mem directly drives smooth
pursuit, whereas TV Pred will be used for the next trial (Eq. 14). Gray boxes represent periods
when the target was blanked (gap periods of 300 ms). A, No prediction available: a visually
guided pursuit eye movement is initiated (black trace), and an estimation of target velocity is
computed (red trace). A default internal representation is used (blue trace). B, The previous

estimation of target motion is used as the internal representation (TV̂k
Mem in Eq. 7; blue trace),

but because the associated uncertainty is quite important (data not shown), the anticipatory
eye velocity is small. However, the estimation of target velocity is improved for the next trial
(red trace). C, The anticipatory eye movement is larger than in B, and the internal estimation of
target motion is still refined. D, The anticipatory pursuit movement begins earlier and is more
prominent because of the larger reliability of the internal estimation of future target velocity. In
all simulations, Gint was set to 0.6 during the gap periods and increased to 1 once the visual
feedback of the moving target was available (80 ms after target motion).
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ms and Gint � 0.5. This time constant was
similar to the one measured in previous
studies (Becker and Fuchs, 1985; Orban
de Xivry et al., 2008). For the simulations
in Figure 10A, we kept � � 100 ms con-
stant, and Gint was set to 0.6 during blank-
ing periods (see Materials and Methods,
Simulation parameters). In general, the
smooth pursuit response was variable,
even during the blanking period, despite
the fact that the gain Gint was kept con-
stant for all trials. This variability resulted

from the noisy RŜ Pred.
Two different simulations are high-

lighted in blue and red (Fig. 10A), differ-
ing only in the behavior near target
reappearance. The red trace illustrates a
trial in which there was no predictive re-
covery, i.e., the pursuit model did not an-
ticipate target reappearance. On this trial,
the large acceleration occurring after tar-
get reappearance was attributable to sensory signals (visually
guided acceleration). However, experimentally, there is a clear
predictive reacceleration before the target reappears on most tri-
als of such paradigms (Bennett and Barnes, 2003). Such a predic-
tive recovery is illustrated by the blue trace in Figure 10A. This
recovery results from an increase in Gint before target reappear-
ance. The time of this increase was varied from 250 to 50 ms
before target reappearance. Late increase in Gint did not yield
strong predictive recovery, whereas early increase in Gint did. The
existence of such an independent time control mechanism was
confirmed by the specific impairment of predictive smooth pur-
suit eye movements in frontotemporal dementia patients (Coppe
et al., 2012).

Different residual pursuit velocities have been reported in the
literature for an individual subject (Orban de Xivry et al., 2006,
their Fig. 8). Our model can reproduce these differences by
changing the value of Gint. In Figure 10B, each simulation had a
different value of Gint (ranging from 0.9 down to 0.4; see Materi-
als and methods), resulting in different residual velocities.

Given that the model possesses a dynamic internal represen-
tation of target motion (Orban de Xivry et al., 2008), it was also
able to reproduce the behavior during the blanking of an accel-
erating target (Bennett and Barnes, 2006; Bennett et al., 2007; Fig.
11) or a sinusoidally moving target (Whittaker and Eaholtz, 1982;
Kveraga et al., 2001; Fukushima et al., 2002; Fig. 12). When the
target was accelerating during the blanking period, the residual
eye velocity was slightly increasing, as is the case in human re-
cordings (Fig. 11). Note that, in our simulations, the value of Gint

was constant during the occlusion period, whereas other models
with a static internal representation increased the value of the
gain to obtain the eye acceleration during the blanking (Bennett
and Barnes, 2006). Instead, in our model, the acceleration during
the blanking period was attributable to the internal representa-
tion of target motion trajectory.

As mentioned above, the use of a static internal representation
would fail to provide appropriate target velocity signals for pre-
dictive tracking if the eye velocity is zero when the target is
blanked (Orban de Xivry et al., 2008). In this case, a pursuit
model with a static memory would not be able to increase its
pursuit velocity, because there is no more retinal information and
no velocity stored into the short-term memory. A simple example

of this situation is shown in Figure 12 in which the sinusoidally
moving target disappears a bit before eye velocity is zero. When
the visual information of target disappearance was available (80
ms after its disappearance), the eye velocity was equal to zero. In
our model, the pursuit velocity increased after target blanking
thanks to the dynamic internal representation of target motion.
During the blanking period, the mean pursuit gain was not as
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Figure 9. Anticipatory smooth pursuit eye movements after viewing but not pursuing the moving target. The internal repre-
sentation (gray trace) was built after three repetitions of target motion without any eye movements (Gint � 0). The internal
representation gave rise to anticipatory eye movements (solid black line) compared with when the internal representation of
target motion is absent (dotted black line). Time of target onset is 0.5 s. Target speed is 20°/s.

Figure 10. Predictive smooth pursuit simulations with target blanking. Simulated pursuit
traces (gray traces) when the target disappeared behind an invisible occluder (blanking period;
gray area). Target velocity (dashed black trace) was 20°/s. A, Two typical simulations are high-
lighted (blue and red traces) with a large and no predictive recovery, respectively. For the
simulations, Gint was set to 1 when the target was visible and then instantly decreased to 0.6
during target blanking. Gint was smaller than 1 when the target reappeared. It was reinstated to
1 when visual feedback of the target was available (i.e., 80 ms after target reappearance). B,
Simulations of smooth pursuit eye movements with different levels of residual velocity. Varying
the gain Gint during the blanking period illustrates the range of variability of the residual velocity
during the blanking (values for Gint are 0.9, 0.84, 0.77, 0.69, 0.6, 0.5, and 0.4).
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large as before (because of a decrease of Gint from 1 to 0.7 during
the blanking period), but pursuit was clearly larger than zero and
synchronized with the target motion, showing that the internal
dynamic representation of the target motion (i.e., based on past
information of the target motion) correctly updated the RS in-
formation. In contrast, a static memory would predict zero eye
velocity during the blanking period (Fig. 12, dashed trace). To the
best of our knowledge, our new model is the first capable to
simulate this behavior.

In summary, the predictive pathway that is based on a trial-to-
trial refinement of a dynamic internal representation of target mo-
tion allowed us to simulate the three different instances of predictive
smooth pursuit that were thought to rely on different systems and to
be primarily disconnected (Barnes, 2008), i.e., anticipatory smooth
pursuit eye movements before target motion onset (Barnes and As-
selman, 1991), predictive pursuit of a sinusoidal target motion (Stark
et al., 1962), and predictive pursuit during transient target disap-
pearance (Mitrani and Dimitrov, 1978).

Weighting of the sensory and predictive response
The model is able to modulate the weights of the sensory and
predictive pathways when there is a conflict between them. For

instance, an internal representation of a target moving at 10°/s
can be in conflict with a visual target moving at 15°/s (Fig. 13). In
this case, the smooth pursuit response will be biased by the most
reliable representation. If the sensory RS has normal noise, it will
bias the smooth pursuit response toward the actual target velocity
(Fig. 13, solid black line). In contrast, if the target is dimmed, the
internal representation will primarily dominate the smooth pur-
suit response (Fig. 13, dashed black line). The noise parameters
are critical for determining the level of eye velocity at the end of
the trial. This reweighting of the sensory and predictive pathways
arises from the optimal combination of their signals (Eq. 15).

Sensitivity to noise
The introduction of stochastic noise was one of the most impor-
tant features of our new model. Changing the amplitude of the
noise present in the system will obviously influence the pursuit
response, but changing the noise can also be interpreted differ-
ently depending on whether the brain is aware of this change or
not. For example, if one increases the noise present in the system
(�sens,add and �sens,mult in Eq. 1) and the estimated noise by the
brain (D and R in Eq. 3) in the same way, then the pursuit re-
sponse will simply become slower, with a lower acceleration. This
is attributable to the Kalman filter effectively taking longer to
estimate target motion as a result of the increase in noise. How-
ever, if one only changes the system noise (Eq. 1) without adjust-
ing the estimated noise, the story is different. In this case, the
brain does not correctly estimate the noise present in the system,
leading to suboptimality (Beck et al., 2012). Figure 14 illustrates
how much a suboptimal estimation of the noise can affect the
pursuit response. When the noise in the model was overesti-
mated, the pursuit variability decreased (Fig. 14B, blue) but the
average pursuit response was little affected (Fig. 14A, blue). In
contrast, pursuit variability was dramatically amplified when the
brain underestimated the noise present in the system, whereas the
average pursuit response was again only slightly modulated (Fig.
14, red). Thus, our results would argue that, practically speaking,
the brain only needs a reasonable approximation of the noise of
the system but does not require precise knowledge of it.

Discussion
We propose a novel model integrating sensory and predictive
signals that was tested on smooth pursuit eye movements. In this
model, Kalman filters provide an estimate of the retinal and ex-
traretinal inputs and their associated uncertainty. This uncer-
tainty is used to combine the sensory and internal memory
signals in a weighted manner (Bayesian integration). Kalman fil-
tering allows our model to naturally produce both predictive and
sensory-driven pursuit characteristics using a single mechanism.

Kalman filtering to estimate and combine retinal and
extraretinal inputs
Previous studies (Osborne et al., 2005, 2007) have highlighted the
importance of noise in the sensory signals, explaining most of the
variability in the initiation of pursuit eye movements. It is also
known that the nervous system lowers the impact of noise on the
sensory estimation (Karmali and Merfeld, 2012). In the present
model, noisy retinal inputs induce variability on pursuit latency and
acceleration during pursuit initiation. During initiation, the integra-
tion of the noisy inputs through Kalman filtering helps reduce the
noise and refine the internal representation of target motion.

The uncertainty associated with the output of the Kalman
filter yields a straightforward way for combining retinal and ex-
traretinal signals in a statistically optimal manner (Ronsse et al.,

Figure 11. Anticipatory eye movements and tracking of an accelerating target. Simulations
(in gray) are compared with experimental data (black trace) with the same target conditions
(target motion is represented by the dashed line). The target underwent a velocity step of 10°/s
and a constant acceleration of 8°/s 2 for 2 s, after the fixation period. It was blanked for 800 ms
(gray box). Experimental data are adapted from Bennett and Barnes (2006).

Figure 12. Blanking of a sinusoidally moving target (peak velocity of�6.7°/s and frequency
of 0.4 Hz). Simulations of predictive pursuit of a sinusoidally moving target (thin dashed trace).
The gray area represents the blanking period. The simulations of our model (black solid traces)

are compared with a model with a static memory (i.e., TV̂k
Mem � TV0, where TV0 corresponds

to target velocity immediately before the blanking; Orban de Xivry et al. 2008) that resulted in
no eye velocity during blanking (thick dashed line). For the simulations, Gint was set to 0.6 until
80 ms after target reappearance (when sensory information was available). Then, it was rein-
stated to its initial value of 1.
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2009). This is consistent with experimen-
tal studies demonstrating the continu-
ous presence of predictive signals despite
the randomization of the target parame-
ters (Kowler and McKee, 1987; Kao and
Morrow, 1994). It argues against the exis-
tence of a switch between the sensory and
predictive pathways (Barnes, 2008). This
optimal weighting of two different noisy
sources of information is a hallmark of
brain function (van Beers et al., 1999;
Ernst and Banks, 2002; Hillis et al., 2002;
Körding and Wolpert, 2004; Vaziri et al.,
2006), even at the single-neuron level
(Fetsch et al., 2012). For the first time, our
model combines continuous flow of sen-
sory and predictive information to drive
motor behavior, whereas a previous
model used Kalman filtering for online
prediction only (Shibata et al., 2005). A
possible implementation of Kalman filters
in the brain has been proposed previously
(Denève et al., 2007), but a full model
based on Kalman filters that integrates as-
pects of predictive and reactive motor
control had never been developed. Our
particular, simple model based on Kal-
man filters could account for all the main
dynamics of predictive and reactive
smooth pursuit eye movements without
switching between submodels and with
the same model parameters.

In the Kalman filtering approach, it is
hypothesized that the brain knows the
properties of the noise (i.e., its variance;
Orbán and Wolpert, 2011; Gallistel and
Matzel, 2013), yet if the estimated noise
properties are incorrect, the estimate of
the sensory input might be either biased
or overly variable (Beck et al., 2012). This
perspective suggests that the processing of
visual information through Kalman filter-
ing might be unreliable because of the re-
quired knowledge of noise properties. In
contrast, we demonstrate here that, in the
pursuit system, the dynamics are quite ro-
bust with respect to this hypothesis and
that incomplete knowledge of noise properties mostly influences
the variability of the response but not its average. Therefore, Kal-
man filtering appears to be a robust solution for the processing of
sensory inputs even when the noise properties are not known
accurately.

Using a dynamic representation of the expected target motion
Previous models always used a static (constant in time) memory
module for the predictive component, which only allowed to
make predictions at a fixed horizon (Shibata et al., 2005; Soecht-
ing et al., 2010) or which only allowed for constant velocity inputs
(Bennett and Barnes, 2003; Churchland et al., 2003; Madelain
and Krauzlis, 2003). For instance, Shibata et al. (2005) used a
Kalman filter for online prediction of target trajectory. In con-
trast, in the present model, Kalman filtering was also used to
build a dynamic memory from past information, even in the

absence of active pursuit of target motion (Barnes et al., 1997).
Indeed, the history of target motion can be used to predict future
target motion when tracking a sinusoidally moving target or a
similar periodic pattern (Dallos and Jones, 1963; Barnes et al.,
1987; Barnes and Ruddock, 1989), when anticipating the timing
of target motion (Barnes and Asselman, 1991; Wells and Barnes,
1998; Barnes and Donelan, 1999; Barnes et al., 2000), or when
scaling the anticipatory eye velocity with the previous target ve-
locity (Barnes and Collins, 2008). Our model demonstrates for
the first time that all these features can stem from the existence of
an internal representation of target motion and do not require
separate mechanisms. The existence of such an internal dynamic
representation of target motion is supported by target blanking
experiments with nonlinear target motion (Orban de Xivry et al.,
2008, 2009). It allowed us to simulate pursuit responses when
tracking an accelerating target (Bennett et al., 2007, 2010) or a
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Figure 13. Online changes in weighting between the sensory and predictive pathways. For these simulations, an internal
representation of target motion was first built by observation (10 repetitions) for a target velocity at 10°/s. For the simulation, a
target with a velocity of 15°/s was then presented. Its visual characteristics were either normal (solid black line; R � 10 and D �
1.5) or the target was dimmed (dotted black line; R � 50 and D � 7.5). For these simulations, Q Pred � 3.

Figure 14. Effect of suboptimal noise estimation. A, Simulation responses to a 20°/s moving target (dashed black trace). Black
trace shows the model simulation with correct noise estimation (�sens,add � 10, �sens,mult � 1.5). The blue dashed trace shows
the pursuit response when the system noise was overestimated by the brain (4-fold noise overestimation: �sens,add � 5 and
�sens,mult � 0.75). The red trace shows the pursuit response when the brain underestimated the noise present in the system
(4-fold noise underestimation:�sens,add �20 and�sens,mult �3). In all simulations, R and D kept their original value. One hundred
simulations were performed to compute the mean response and the SD around the mean for each of the three different cases
(normal noise, noise underestimation, and noise overestimation). Shaded areas surrounding these traces represent the SD around
the mean. B, Pursuit responses evaluated 300 ms after target onset (gray vertical bar in A) for the three simulations. The blue
(respectively, red) error bars show fourfold noise overestimation (respectively, underestimation), whereas the black error bar
represents the simulation with correct noise estimates. Means � SD are represented.
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sinusoidally moving target (Fig. 11). In our simulations, a default
internal representation was improved on a trial-to-trial basis
thanks to Kalman filtering. This trial-to-trial refinement has been
used to explain the content of motor memories for motor learn-
ing (Krakauer et al., 2006; Kording et al., 2007). The presence of
such dynamic internal representation could also explain the pre-
dictive ability of human subjects in ball catching (Hayhoe et al.,
2005; Diaz et al., 2013) or hitting (Land and McLeod, 2000).

In our model, the efference copy signal is essential to build the
internal representation of target motion (Fig. 1). Schizophrenic
patients cannot process the efference copy signal properly (Pynn
and DeSouza, 2013). This impairment results in abnormalities in
the awareness of actions (Frith et al., 2000) and in a deficit of
sensory prediction (Shergill et al., 2005; Synofzik et al., 2010). The
dependence of the internal representation on the efference copy
signal might explain why schizophrenic patients are impaired in
predictive smooth pursuit (Sereno and Holzman, 1993; Thaker et
al., 1998, 2003; Trillenberg et al., 1998; Hong et al., 2005; Nagel et
al., 2007; Adams et al., 2012) and in prediction of target trajectory
(Hooker and Park, 2000; Spering et al., 2013).

The output of the predictive pathway had a lead of 150 ms
with respect to the sensory signal (70 ms in advance of the actual
target motion given 80 ms of sensory delay), yet we do not believe
that a single time horizon for this prediction exists. Rather, we
hypothesize that there are many predictions of the target motion
for different time horizons, such as those used for simulations of
walking (Azevedo et al., 2004; Aftab et al., 2012). Such optimal
prediction of future target motion could ideally replace our pre-
diction made on this arbitrary 150 ms horizon, although our
results suggest that it might be a reasonable value.

Neural substrate of the model
Sensory areas appear to filter noise coming from sensory inputs
to improve the reliability of the input over time. A model based
on Kalman filtering can account for neuronal activity in visual
areas during vision of natural images (Rao and Ballard, 1997). In
these areas, the prior is represented by spontaneous activity
(Berkes et al., 2011). Neurons in the temporal cortex also accu-
mulate evidence for face recognition (Perrett et al., 1998). Their
response to a new sensory input is biased by previous sensory
inputs, i.e., by a prior (Jellema and Perrett, 2003). This is true for
motion processing areas as well. Area MT plays a major role in the
integration of local motion signals (for review, see Born and
Bradley (2005)). Osborne et al. (2004, 2007) found evidence of
information accumulation in the activity of a large population of
MT neurons. The dynamics of neural activity in area MT might
therefore reflect the iterative computation performed by the Kal-
man filter (Pack and Born, 2001; Osborne et al., 2004). However,
MT neurons did not seem to discharge when blanking the target
(Newsome et al., 1988), which suggests that this area is located
within the visual pathway of our model.

The predictive pathway could be part of a parietofrontal network
as suggested for manual interception tasks in monkeys (Merchant
and Georgopoulos, 2006). For these tasks, area 7a of the posterior
parietal cortex and the motor cortex appear to encode different pa-
rameters of target motion. This internal representation of target mo-
tion is then used in a predictive manner by the motor cortex
(Merchant et al., 2004). For eye movements, neurons in the frontal
eye field (FEF) are active during transient disappearance of the track-
ing target and might represent some form of internal representation
of target motion for manual target interception or saccades (Barbo-
rica and Ferrera, 2003, 2004; Xiao et al., 2007; Ferrera and Barborica,
2010). The part of the FEF dedicated to smooth pursuit has been

hypothesized recently to store previous expectations of target mo-
tion that can be used for smooth pursuit initiation (Yang et al.,
2012). Alternatively, this prior could be interpreted as the dynamic
internal representation of past target motion and could thus bias
smooth pursuit initiation in the same way, as postulated in our
model. In summary, the interaction between area MT and FEF
might be critical to form an estimate of the RS incorporating both
sensory and predictive signals.

Finally, the cerebellum exerts a large influence on the predic-
tive pathway. First, it acts as a forward model for eye movements
(Ghasia et al., 2008). Second, it may also contain an internal
representation of target motion (Miles and Fuller, 1975; Suh et
al., 2000; Cerminara et al., 2009) that does not depend on retinal
signal (Stone and Lisberger, 1990; Suh et al., 2000).

Conclusion
Kalman filters elegantly describe in a functional manner how the
brain may deal with noisy sensory inputs, how it may form mem-
ories, and how it may take advantage of uncertainty estimation to
combine different signals optimally. These three principles al-
lowed us to accurately describe visually guided and predictive
smooth pursuit dynamics observed in a wide variety of tasks
within a single theoretical framework.
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