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To explore the possible cortical mechanisms underlying the 3-
dimensional (3D) visuomotor transformation for reaching, we
trained a 4-layer feed-forward artificial neural network to compute
a reach vector (output) from the visual positions of both the hand
and target viewed from different eye and head orientations (inputs).
The emergent properties of the intermediate layers reflected
several known neurophysiological findings, for example, gain
field--like modulations and position-dependent shifting of receptive
fields (RFs). We performed a reference frame analysis for each
individual network unit, simulating standard electrophysiological
experiments, that is, RF mapping (unit input), motor field mapping,
and microstimulation effects (unit outputs). At the level of individual
units (in both intermediate layers), the 3 different electrophysio-
logical approaches identified different reference frames, demon-
strating that these techniques reveal different neuronal properties
and suggesting that a comparison across these techniques is
required to understand the neural code of physiological networks.
This analysis showed fixed input--output relationships within each
layer and, more importantly, within each unit. These local reference
frame transformation modules provide the basic elements for the
global transformation; their parallel contributions are combined
in a gain field--like fashion at the population level to implement
both the linear and nonlinear elements of the 3D visuomotor
transformation.
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Introduction

Reaching toward an object in 3-dimensional (3D) space

requires a transformation of visual signals into a motor plan

suitable to drive the arm (Flash and Sejnowski 2001; Blohm and

Crawford 2007). At the heart of this process is a ‘‘reference

frame transformation’’ that converts eye-centered sensory

signals (also often called gaze-centered or retinotopic signals)

into shoulder-centered motor signals (Soechting et al. 1991;

Snyder 2000; Crawford et al. 2004; Blohm and Crawford 2007).

When reference frame transformations are analyzed from a 2D

perspective that utilizes mathematics appropriate for trans-

lations, they can be trivialized as a sequence of vectorial

movement commands that are independent of the initial,

intermediate, or final frame of references (Jurgens et al. 1981;

Goldberg and Bruce 1990; Crawford and Guitton 1997; Buneo

et al. 2002). However, 3D geometry includes both translational

and rotational aspects that require complex and nonlinear

solutions (Pouget and Sejnowski 1997; Blohm and Crawford

2007). For example, to compute an accurate reach plan from

visual signals, the brain needs to account for 3D eye and head

orientation, the spherical geometry of the eyes, as well as for

the offset between the centers of rotation of eyes, head, and

shoulder (Crawford et al. 2000; Henriques and Crawford 2002;

Blohm and Crawford 2007). These 3D computations are not

a side issue that can be ‘‘tacked onto’’ a 2D stream; they are the

central problem in sensorimotor reference frame transforma-

tions (Crawford et al. 2004).

Such transformations are not merely of theoretical interest;

they pose a practical problem that needs to be solved for

proper behavior. Failure to account for eye and head

orientation would lead to reach errors—potentially quite

large—whenever the eyes and head are not pointed straight

ahead in an upright orientation. For example, if the head is

tilted torsionally (Fig. 1A) or if gaze is simply deviated in an

oblique direction (Fig. 1B), failure to account for the resulting

distortions of retinal projection and their complex relation to

shoulder orientation will lead to errors in both reach direction

and depth (Blohm and Crawford 2007). Because such large

errors are not observed behaviorally (Soechting et al. 1991;

Henriques et al. 1998, 2003; Henriques and Crawford 2002;

Medendorp and Crawford 2002; Blohm and Crawford 2007),

the brain must take into account the full complexity of the

body geometry.

At the moment, no one knows how the brain implements

these transformations for 3D reach. A number of theoretical

studies have investigated the visuomotor transformation using

1D or 2D approximations (Zipser and Andersen 1988; Salinas

and Abbott 1995, 1996, 2001; Pouget and Snyder 2000; Xing

and Andersen 2000; Deneve et al. 2001; Mascaro et al. 2003;

Smith and Crawford 2005), but as discussed above, these

approximations do not capture the complexity of the real

transformation. Similarly, numerous electrophysiological

experiments have investigated the visuomotor transformations

for reach from a 2D perspective (for reviews, see Snyder 2000;

Battaglia-Mayer et al. 2003). These experiments have provided

critical insights into the reach-related neural signals in parietal

and frontal cortex. However, without a proper 3D theoretical

framework, one cannot have a complete understanding of the

existing data or design optimal experiments.

For example, many physiological and theoretical investiga-

tions of reference frame transformations have focused on the

analysis of ‘‘gain fields,’’ that is, the eye/head position--

dependent modulation of visual and motor receptive field

(RF) amplitudes (e.g., Andersen et al. 1985; Brotchie et al.

2003). Theoretical gain fields were first observed in artificial
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neural nets trained to transform a 2D location on an eye-

centered map into a 2D location on a head- or space-centered

map (Zipser and Andersen 1988). However, this transformation

bears little resemblance to the geometric transformations

required for 3D reach (Blohm and Crawford 2007). Moreover,

when reference frame transformations are reduced to 2D (i.e.,

linear, additive, and commutative) processes, gain fields are not

a theoretical necessity (Pouget and Sejnowski 1997). This has

led to the suggestion that gain fields are not related to

reference frame transformations but rather serve some other

function (Colby and Goldberg 1999).

Further, there is reason to suspect that the computations

required for 3D geometry—spherical projections, nonlinear

noncommutative multiplicative transformations, misaligned

centers of rotation—will necessitate entirely different imple-

mentations in real or artificial networks than for 2D compu-

tations. With the addition of 3D constraints, one cannot assume

that properties that arose from 2D simulations will hold up, and

neither can one assume that the arguments against them will

hold. This is a question that is best answered empirically.

Another important question is whether the intermediate

layers of neural networks involved in sensorimotor trans-

formations use any coherent reference frame at all. Networks

that were designed to use basis function units have shown

convincingly that a 2D reference frame transformation (e.g.,

from eye coordinates to head coordinates) can be done using

intermediate units that employ mixed, intermediate frames

(Pouget and Sejnowski 1997; Pouget and Snyder 2000; Xing and

Andersen 2000). After all, it is only the output of the network

that matters for behavior, not the intermediate stages.

However, it has not been shown if the same network behavior

arises in nonbasis function networks that are trained to

perform a 3D transformation.

Finally, a question of critical importance to experimentalists

relates to the nature of the information that can be derived

using standard electrophysiological methods: microstimulation

and the correlation of neuronal activity to either sensory or

motor parameters. For example, often there is an implicit

assumption that visual RFs, motor tuning, and stimulation-

evoked movement should align in an optimal visuomotor

transformation. Misalignments are often treated as ‘‘noise’’ or

technical limitations. However, several theoretical studies

have provided results that question these basic assumptions

(Pellionisz and Llinas 1985; Zipser and Andersen 1988;

Pellionisz and Ramos 1993; Smith and Crawford 2001, 2005).

As we will demonstrate below, there is good reason to suspect

that the units within a network involved in a 3D reference frame

transformation must simultaneously encode different types of

information (related to both sensory input and motor output) in

different reference frames and that different electrophysiolog-

ical techniques reveal different aspects of these codes.

A complete model of the sensorimotor transformations for

reach would include multisensory representations of both

target and hand position (Sober and Sabes 2003, 2005; Ren et al.

2006) and a complete model of limb dynamics (Todorov 2000;

Todorov and Jordan 2002) including feedback control loops at

different levels. However, our main goal here was to model the

early feed-forward parietal--frontal transformations from visual

inputs into motor commands, with a focus on the role of

extraretinal eye and head position signals. Therefore, we have

restricted our representations of both target and hand position

inputs to visual coordinates and our outputs to motor

commands in shoulder coordinates. We believe that this is

experimentally justifiable because 1) visual representations

appear to override proprioceptive representations of hand

position (Sober and Sabes 2003, 2005), 2) there is evidence that

target and hand position signals are compared in visual

coordinates in parietal cortex (Buneo et al. 2002), and 3)

parietal cortex is not thought to be involved in the detailed

control of limb dynamics (Kalaska and Crammond 1992). Thus,

here we are simply asking: how do neural networks transform

visual inputs into the early motor plan for 3D reach?

We recently modeled this transformation using explicit

geometric transformations (Blohm and Crawford 2007), but

‘‘black box’’ models cannot show how neural networks solve

the problem. Given that the real transformation appears to

occur accurately in a feed-forward fashion (Blohm and

Crawford 2007), it is reasonable to develop the necessary

framework using a feed-forward artificial neural net. A similar

approach was used with some success with the 3D visuomotor

transformation for saccades (Smith and Crawford 2005), but

the transformations for reach are much more complex. To date,

Figure 1. Nonlinearity of the 3D reference frame transformation. The retinal map (right
panel) shows the projection of the hand and target (left panel, black dot) as well as the
screen horizontal and vertical onto the retina. (A) Head roll (20� clockwise, blue) with
eyes straight ahead. The black lines show the reference position with eye and head
straight ahead. (B) Oblique gaze (35� up-left on oblique axis) with head straight ahead.
The screen horizontal/vertical lines on the retinal projection (right side) show the
nonlinearities arising for secondary eye and/or head position. The colored arrows and
dots on the left panel show the movement that would have been generated from the
retinal projection of the real hand and target position (left panel, black) if eye/head
positions had been ignored. (Adapted from Blohm and Crawford [2007].)
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no one has trained an artificial net to solve the 3D geometry

required for accurate reaching.

Figure 2 provides an overview of the approach that we took

in the current study. We began (Fig. 2A) with the black box

model of the 3D transformations for reach that we developed

in our previous study (Blohm and Crawford 2007). Briefly,

a visual desired movement vector has to be rotated and

translated into a shoulder-centered motor command. Rotations

have to account for eye-in-head and head-on-shoulder orien-

tation, whereas translations account for the fact that the

centers of rotation of the eyes do not coincide with that of the

head and the center of rotation of the head does not coincide

with that of the shoulder. We then looked at the known

physiology of the corresponding occipital--parietal--frontal

cortex reach system (Fig. 2B) for inspiration to design coding

schemes for the input and output layers of a feed-forward

neural network (Fig. 2C). Finally, we used our black box model

as a teacher to train the network to perform the 3D

transformations for reach, much as the real system would learn

through trial and error with sensory feedback. We compared

the input and output properties of individual units within and

between processing layers (Fig. 2D), using simulations of the

major electrophysiological techniques (visual RF mapping,

motor tuning, and microstimulation).

The overall purpose of this investigation was to 1) develop

a theoretical network model for the feed-forward network

properties that give rise to accurate visually guided 3D reach, 2)

demonstrate through simulations how different ‘‘experimental

techniques’’ can reveal different computational properties

within this network, and 3) incorporate these findings, in light

of previous models, into a single consistent theoretical

framework. We show how our network performed the full

reference frame transformation in a gradual manner through

both serial transformations across successive hidden layers and

through parallel distributed transformations across individual

units within these layers. Gain fields are the necessary vehicle

for weighting the contributions of these units. We show that

the neural populations, and even individual units, in these layers

show different reference frames when tested using different

techniques (Fig. 2D). Moreover, based on comparisons with the

experimental data, we propose that this framework applies

equally well to the physiology of the real system.

Materials and Methods

The visuomotor transformation process associated with visually guided

reaching can be divided into 3 separate stages: 1) from the binocular 2D

retinal images, the brain must construct and maintain an internal

egocentric representation of the 3D location of the desired reach

object and the initial hand position (Cohen and Andersen 2002;

Merriam and Colby 2005; Tsutsui et al. 2005; Burgess 2006; Rushworth

and Taylor 2006); 2) these egocentric, gaze-centered representations of

the hand and target position then have to be transformed into

a shoulder-centered movement plan for the hand (Burnod et al. 1999;

Snyder 2000; Battaglia-Mayer et al. 2003; Crawford et al. 2004), and 3)

the desired motor plan must be converted into dynamic muscle

activation patterns that control the actual reaching movement (Kalaska

et al. 1997; Baraduc et al. 2001; Todorov and Jordan 2002; Scott 2003).

Here, we focus on the second step in this visuomotor conversion: how

the brain performs the reference frame transformation from the

egocentric, gaze-centered representations of hand and target position

to the shoulder-centered reach movement plan. Because the motor

command of the arm has to be specified with respect to its insertion

point at the shoulder (Soechting et al. 1991) and only visual information

(not proprioception) about the hand position was used, we modeled

the visuomotor transformation between a gaze-centered and shoulder-

centered motor plan and did not include the 3D geometry of the arm.

The 3D arm geometry seems to be predominantly used in the third step

to specify muscle activations from a desired movement plan (Kalaska

et al. 1997; Kakei et al. 2001, 2003; Scott et al. 2001; Scott 2003).

Neural Network Model Architecture
We used a physiologically inspired, fully connected 4-layer feed-

forward neural network to model the brain’s complete 3D visuomotor

transformation for the planning of open-loop reach movements (Blohm

and Crawford 2007). Figure 3 shows a schematic of the network

Figure 2. Different levels of understanding visuomotor transformations in the brain. (A) This geometric model illustrates the mathematical sequential transformations involved in
converting a gaze-centered desired movement vector into a shoulder-centered motor plan. This transformation is composed by translations and rotations (Blohm and Crawford
2007). (B) Brain structures known to be part of the visuomotor transformation pathway in the brain. V1, visual cortex (gaze-centered encoding of viewed hand and target
positions); PPC, presumably the hidden layer of our neural network model; S1, somatosentory cortex (a potential source of the extraretinal eye and head position signals); PMd/v,
dorsal/ventral PM cortex (the hypothetical population output of our neural network model); M1, primary motor cortex; PCS, precentral sulcus; and CS, central sulcus. Panels (A, B)
are adapted from Blohm and Crawford (2007). (C) Neural network implementation of the different brain structures. This is a cartoon of the neural network used in this study (see
Fig. 3). (D) Our interpretation of how reference frame transformations might be performed in distributed computing. The eye icon stands for gaze-centered coordinates and the
hand icon represents shoulder-centered coordinates. The presence of both icons depicts a spread of reference frames between and beyond gaze- and shoulder-centered
coordinates. Same colors in panels (A-D) refer to corresponding levels of processing.
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architecture. The first neural layer consisted of 7 distinct inputs,

comprising retinal target and hand positions, the retinal disparity

associated with these hand and target positions, 3D eye and head

orientation inputs, and an ocular vergence input. We chose as

a simplification to present initial hand position in visual coordinates

and not to include any explicit proprioceptive signals because it has

been shown that in the absence of vision, posterior parietal cortex

(PPC) encodes hand position in visual coordinates (Buneo et al. 2002).

This simplification is supported by the finding that the brain preferably

uses visual input over proprioceptive information about hand position

(Sober and Sabes 2003, 2005; Ren et al. 2006). As we will show, our

findings concerning the hidden layer unit (HLU) RF properties are

fully compatible with electrophysiological results (Buneo et al. 2002),

which validates our approach.

All these inputs are necessary to fully describe the body geometry and

to specify the 3D positions of hand and target in cyclopean eye-centered

coordinates. The second (hidden) layer of our network was composed of

a number of units that could vary between 9 and 100 units. The third

(population output) layer contained a population of units that coded 3D

movement plans in shoulder-centered coordinates. The activity of this

layer was read out by the fourth (readout) layer, which coded the 3

components of the shoulder-centered movement plan in 3D euclidean

space. All components of the network are explained in detail below.

The input--output relationship of all units in the second and third

layers was modeled by a sigmoid function designed to mimic the

nonlinear transfer function of real neurons (Naka and Rushton 1966a,

1966b, 1966c), that is,

aðxÞ = 1

1 + e –x
: ð1Þ

The input layer activations were not put through this sigmoid

function. The readout of the population coding in the output layer was

purely linear (see below). Note that we did not use ‘‘basis function

networks,’’ as this has been done in previous studies (e.g., Pouget and

Sejnowski 1997).

Inputs

Retinal Position: Topographical Hand and Target Maps

The sets of horizontal and vertical cyclopean (Ono and Barbeito 1982;

Ono et al. 2002; Khokhotva et al. 2005) retinal positions ðpX ; pZ Þ of

hand and target were encoded in 2 separate retinotopic topographical

maps of units, which specified hand and target direction relative to the

fovea. These units had Gaussian RFs (width r = 20�), and their

activations were computed as follows:

ai = exp

 
–
ðpX –xi Þ2 + ðpZ – zi Þ2

2 � r2

!
: ð2Þ

In analogy to the organization of the striate cortex, these neurons

were uniformly distributed in a topographical map with a maximum

circular eccentricity of 90�. Although we limited our visual inputs to

70�, we used 90� maximum eccentricity instead of the 70� visual field
to avoid edge effects for the encoding of eccentric targets. The

horizontal and vertical spacing of the units was 10�, which led to a total

of 253 units. Similar topographical maps have been used to encode

retinal target position in previous neural network studies (Zipser and

Andersen 1988; Xing and Andersen 2000; Smith and Crawford 2005).

Retinal Disparity: Topographical Maps for Hand and Target

To specify hand and target distance, we encoded horizontal and vertical

retinal disparities (dH, dV) of hand and target in 2 separate topographical

maps of units. These units were given disparity tuning curves with

profiles similar to those found in monkey neurons (Poggio and Fischer

1977; Poggio 1995) and cats (Nikara et al. 1968; Pettigrew et al. 1968;

Ohzawa et al. 1997). The idealized disparity sensitivity functions we

used here are 2D extensions of previously used ones (Lehky and

Sejnowski 1990; Pouget and Sejnowski 1994). The activation of the

topographical disparity neurons was computed as follows:

ai =aX ;i � aZ ;i ; ð3Þ

whereak;i =

a0 � exp
�
–
ðdk –ki Þ2

r2
i

�
–a1 � expð – ðdk –ki –r2i Þ

2

r2
i

Þ; for ki< – 1;

a0 � exp
�
–
ðdk –ki Þ2

r2
i

�
–a1 � expð – ðdk –ki + r2i Þ

2

r2
i

Þ; for ki>1;

a0 � exp
�
–
ðdk –ki Þ2

r2
i

�
; for – 1 <ki <1;

8>>><
>>>:

ð4Þ
where k stands for X or Y. The variance was r2i =

�
X 2

i
+Z 2

i

��
2 with

a minimum of 10 minarc and we used constants a0 = 1 and a1 = 0:35

Figure 3. Neural network model. The 4 sections from top to bottom (separated by the
downward gray arrows) show the 4 layers of our feed-forward artificial neural network.
The input layer (first section labeled ‘‘inputs’’) is composed of 3D hand and target
positions in gaze-centered coordinates, each of which is divided into 2 two-dimensional
maps, that is, cyclopean retinal position and retinal disparity. In addition to these visual
inputs, extraretinal 3D eye and head positions as well as an ocular vergence input were
also provided. All signals were fed forward into a hidden layer that consisted
of—depending on the training session—a different number of HLUs (9--100). The HLU
signals were fed into a population output layer with 125 units with theoretical preferred
movement directions that were randomly distributed in 3D shoulder-centered space.
The spherical activation pattern superimposed on the preferred direction vectors
designates the idealized cosine tuning of the population. The network was trained on
the fourth layer, that is, the readout of the population code (x, horizontal; y, depth; z,
vertical). The weights of this readout were fixed prior to training and calculated using an
OLE based on the population code’s preferred directions and the assumption of cosine
tuning. Weights win and wout were the only weights that were adapted during training
of the network. Refer to Materials and Methods for more details.
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(Pouget and Sejnowski 1994). To maintain an approximately constant

overlap of the disparity tuning curves, we used preferred disparities for

our units (the disparity at which a unit showed maximum activation)

that were nonuniformly spaced on an elliptic map. The spacing of these

units was 10� horizontal and vertical for all preferred disparities with

the exception of the central region (around zero). The spacing here

was 1� for preferred disparities up to 2� horizontal and vertical and 5�
spacing for units with preferred disparities up to 10�. The different

combinations (Xi, Zi) of the units’ preferred disparity were arranged

within an ellipse of (45�, 30�) and included a total of 67 units for each

overall retinal disparity input signal. Again, the range of this ellipse was

chosen slightly larger than the range of disparities used to avoid edge

effects for the encoding of large retinal disparities.

Eye-in-Head, Head-on-Body, and Vergence Inputs

The 3D reference frame transformation depends critically on eye-in-

head and head-on-shoulder positions (Blohm and Crawford 2007).

Therefore, we need extraretinal signals that describe eye and head

position. In addition, retinal disparity only provides distance relative to

the fixation distance. To perform an accurate reach, we therefore need

ocular vergence in order to obtain absolute distance.

For both eye-in-head and head-on-body orientations, we used a 3D

angle vector representation (rx, ry, rz), equal to the unit rotation vector

multiplied by the rotation angle in degrees. We used an encoding

scheme inspired by motor neuron activity. To encode positive and

negative rotations (e.g., clockwise and counterclockwise), we trans-

formed the 3D angle vector into a 6D array of input unit activities (we

thus had 6 inputs for eye and 6 inputs for head position) arranged in

push--pull antagonistic activations (King et al. 1981; Fukushima et al.

1990; 1992; Xing and Andersen 2000). Each pair of activations was

computed as follows (Smith and Crawford 2005; Keith et al. 2007):

a±;i = 0:5±
ri

23 r0
; ð5Þ

where the maximum angle of orientation, r0, was equal to 50� for eye
orientations and 70� for head orientations. The coordinate system for

the encoding of the eye orientation angular vectors was rotated 45�
around the z axis to reproduce the mixed vertical--torsional encoding

of eye orientations observed in the brainstem neural integrator

(Crawford et al. 1991; Crawford and Vilis 1992; Crawford 1994; Suzuki

et al. 1995).

We used a 1D (positive) input to code the ocular vergence angle of

the eyes. Ocular vergence was defined as the absolute angle uV (in

degrees) between the right eye and left eye gaze directions. Small

angles correspond to far fixation positions, larger angles represent near

fixation points. The activation of the input unit coding the vergence

state of the eyes was computed as (Pouget and Sejnowski 1994):

a =
uV

45�
: ð6Þ

Population Coding and Decoding of the Output
The output layer (fourth layer) of the neural network consisted of 3

units that coded movement in space. Each unit encoded a single spatial

direction, that is, X (horizontal), Y (posterior--anterior), and Z (vertical)

that corresponded to the movement distance of the hand along the 3

cardinal axes. These output units read out the distributed representa-

tion of the movement vector from the previous layer (third layer) of the

neural network. This ‘‘behavioral’’ readout was chosen in a very specific

manner that reflected the implicit assumption of cosine-tuned units in

the population output layer (third layer) of our network. Note that the

weights between layers 3 and 4 were calculated prior to the training

and kept constant during the adaptation process of the neural network.

We did not train the readout weights because this behavioral readout

method was only used to quantify the movement vector encoded by

the population output layer. As previously noted, decoding distributed

representations is crucial because it allows an unambiguous quantita-

tive interpretation of single-unit activity (Salinas and Abbott 1995).

The third layer of our neural network consisted of 125 cosine-tuned

units with preferred directions (PD
/

i ) randomly, uniformly distributed

on a unit sphere (Fig. 3). Cosine-tuned neurons that encode movement

direction in extrinsic (likely shoulder centered) coordinates have been

observed in the premotor (PM) cortex of the monkey (Kalaska et al.

1997; Kakei et al., 2001, 2003; Scott 2001). It has also been shown

theoretically that cosine tuning was optimal for motor control in 3D

(Flash and Sejnowski 2001; Todorov 2002). To obtain such a spherically

uniform random distribution of preferred directions, we generated 3

random Gaussian variables (xi, yi, zi) with a mean of zero and a standard

deviation of one. Next, the distribution of the preferred direction

vectors was computed as:

PD
/

i =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
i
+ y2

i
+ z 2

i

p
0
@ xi

yi
zi

1
A: ð7Þ

PD
/

i is statistically uniform over the spherical surface (Muller, 1959;

Marsaglia 1972). We used a statistically uniform distribution of PD
/

i to

match the above-cited electrophysiological findings. In order to

calculate the behavioral readout weights, we assumed cosine tuning

in the third (population output) layer units. The hypothesized cosine-

tuning behavior of each third layer unit i can then be represented by

the units’ theoretical activation as:

ai =a0 +a1 � coshi ; ð8Þ
where a0 = 0:5 is the baseline firing rate and a1 =

0:5�k ~Mk
Amax

is the cosine

scaling parameter that scaled the unit activity to the size of the

required movement ~M , whereas the angle hi = cos
–1
�
PD
/

i � ~M
k ~Mk

�
coded the

direction of the movement. The combined coding of movement

direction and amplitude within the same units is consistent with recent

neurophysiological findings (Fu et al. 1993; Messier and Kalaska, 2000).

The maximum amplitude of movement was Amax = 2m, and the

activation of the output units was scaled so that ai 2 ½0; 1�. The

maximum movement amplitude Amax was larger than the maximal

possible movement (=175 cm). This was done to avoid the case where

the desired output of the units was close to the working limit of the

sigmoid transfer functions. Note that we did not train the network to

reproduce the theoretical activations specified in Equation (8).

Importantly, the implicit assumption of a cosine-tuning behavior of the

third layer units allowed us to explicitly compute the readout weights

from these third layer units i into the units j in the output (fourth) layer.

To do so, we used an optimal linear estimator (OLE) method (Salinas

and Abbott 1994). Using this method, we calculated the weight matrix

wij between layer 3 and layer 4 (which is also called the ‘‘OLE’’) as:

wij = +
k

Q
– 1
ik Lkj : ð9Þ

For a full cosine-tuning function of the third layer units as described

in Equation (8), the center of mass matrix Lkj (the index j stands for the

vector component, i.e., X, Y, or Z) and the cross-correlation matrix Qik

were calculated as follows:

Lkj =

Z
dMj �Mj � ak

�
Mj

�
=
4p � a1

15
PDkj ; ð10Þ

Qik = r2kdik +
R
d ~M � ai ð ~M Þ � akð ~M Þ

= r2kdik +
4p�a2

0

3
–
4p�a2

1

15
�
�
PD
/

i � PD
/

k

�
:

ð11Þ

The cross-correlation matrix Qik includes an estimate of the

expected neural noise rk and a dot product that specifies the

interaction between 2 tuning curves. We set the noise parameter at

an arbitrary value of rk = 0:01, which was constant across all third layer

units k. See Supplementary Methods for a description of the theoretical

readout accuracy of the movement vector for different noise levels. We

chose the ideal number of third layer units based on the observation

that improvement in accuracy was small when the number of units

increased past 125. Again, the readout weights between the third layer,

and the output layer were assigned prior to the network training and

were not modified during the training process. We trained our neural

network on the output layer (the 3D movement vector) only and did

not constrain the activations of the units in the third (cosine tuned)

population output layer. It is also important to note that the choice of

a uniform distribution of the third layer PD
/

i did not affect or constrain
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the readout process in any way because the OLE does not require any

particular distribution of the preferred directions.

Training Method and Training Set
We generated a training set that accounted for the complete 3D

geometry of the eye--head--shoulder linkage (Blohm and Crawford

2007). Within this training set, the 3D binocular eye positions complied

with the binocular extension of Listing’s law (Van Rijn and Van den

Berg 1993; Hepp 1995; Tweed 1997; Somani et al. 1998), which

constrains the 3 degrees of freedom (df) for the eye rotation

behaviorally to 2 effective df. This places the eye rotation vectors into

a plane known as Listing’s plane. The binocular version of Listing’s law

is modulated by the static vestibuloocular reflex (VOR) by counter-

rolling the eyes when the head is tilted toward the shoulder (ocular

counter-roll) and by modifying the primary position of Listing’s plane

with head up and down (gravity pitch of Listing’s law) movements

(Haslwanter et al. 1992; Bockisch and Haslwanter 2001).

Eye and head orientations were randomly chosen and were

approximately uniformly distributed around straight-ahead position.

Fixation distance varied between 25 cm and 5 m so that vergence was

approximately uniformly distributed. We then randomly chose a com-

bination of hand and target positions within the visual field, that is, at

a maximum of 70� visual eccentricity. The range of both hand and

target positions was set within reach space, that is, not more than 85

cm distant from the right shoulder (here, we arbitrarily chose to

simulate right-hand motor planning).

From this visuomotor arrangement, we computed the projections of

hand and target onto retinal coordinates of a hypothetical cyclopean

eye. We also calculated retinal hand and target disparity, eye position,

head position, ocular vergence, and the resulting motor plan in

shoulder-centered coordinates. We randomly generated a total of

500 000 training points, where each training point corresponded to

one set of input and output activations computed for one particular

eye--head--hand--target configuration. A random subset of this training

set was used to train our networks (Table 1 shows the size of the

training set for different network sizes). See Results for more details.

We used a resilient back-propagation (RPROP) technique to adjust

the weights of the neural network during training (Riedmiller and

Braun 1993). As a modification of the pure gradient descent algorithm,

RPROP dynamically modifies the learning rate as a function of the

gradient’s sign but independently of the size of the derivative. This

results in an efficient adaptation process with increased convergence

and in a stable learning behavior. Note again that only the interlayer

weights of layers 1--2 and 2--3 were adapted. The weights between

layers 3 and 4 for the readout of the cosine-tuned activity were held

constant.

The neural network was implemented in Matlab 7 (R14) (Mathworks

Inc., Natick, MA) using the Neural Networks Toolbox and customized

functions. We used a 64-bit dual Intel Xeon Irwindale (3.0 GHz, 800

MHz system bus, 2 MB integrated L2 cache) computer with 8 GB RAM

(400 MHz DDR2) and running a RedHat Linux Enterprise 4 operating

system. Training durations varied from a few hours (9-HLU network) to

approximately 4 weeks (100-HLU network) and depended on the

criterion of convergence as well as the size of the training set (Table 1).

We stopped network training when the evolution of the root-

mean--squared error (RMSE) was no longer perceptible on a log--log

scale, that is, the gradient became <10–6.

Neural Network Analysis
To analyze the network, we used methods similar to those employed

earlier in oculomotor models (Smith and Crawford 2005; Keith et al.

2007). We quantified the overall network performance by computing

the 3D compensation index (Blohm and Crawford 2007). Briefly, the

3D compensation index is a metric measurement that assesses the

amount by which the network adjusted the gaze-centered movement

vector to produce the shoulder-centered motor command.

We also computed eye and head position sensitivity vectors (Keith

et al. 2007). These are 3D vectors that describe how the activity of

a certain HLU or unit of the population code (third layer) is modulated

by a change in 3D eye or head position. For example, a purely

horizontal eye position sensitivity vector would indicate that only

horizontal eye position changes modulate the unit’s activity, but the

activity remains constant across vertical or torsional eye movements.

The sensitivity vectors are defined by the weights connecting the eye

or head position input to the unit considered.

We computed motor fields in order to assess a unit’s contribution to

the motor output. To analyze the motor fields, we fitted the unit activity

for all movements executed with a certain eye position to the following

generalized cosine tuning function.

ai = bi + ci � coshi : ð12Þ

The index i stands for an individual movement. The parameters were

calculated using the following equations.

bi = b0 +b1 � k ~Mik;
ci = c0 + c1 � k ~Mik;
hi = cos

– 1
�
PD
/

� ~Mi

k ~Mik

�
:

ð13Þ

We used a nonlinear least-squares fitting algorithm (Gauss--Newton

search) to evaluate the free parameters b0, b1, c0, c1, and PD
/

for each

eye position. Next, we computed the rotational gains to evaluate the

change of the preferred direction PD
/

with eye position, that is, how eye

position changes the direction of movement for which we get

maximum activity for a given unit. To do so, we calculated the angles

between the preferred direction for nonzero eye positions (i.e., eye

positions that are not straight ahead) and the preferred direction for

straight-ahead fixation. To obtain the rotational gains, we then

performed a linear regression of those angles with the amplitude of

eye position. We used rotational gains as one way of quantifying the

motor reference frame of each unit. Next, we computed the gains

related to the change in motor field amplitude (and not direction) with

eye position. We computed the unit’s activation at the preferred

direction for each eye position using the identified generalized tuning

parameters in Equations (12) and (13). We then performed a regression

analysis of the unit’s preferred activation as a function of eye position

for different eye positions, which resulted in the motor field amplitude

change gain value. (Note: we multiplied this gain by the eye position

range, i.e., 90�, to render the result dimensionless.)

Finally, we computed response field gradients, which provide an

indicator of which variables modulate the unit’s response most

strongly. To do this, we varied target position, fixation position, and

initial hand position separately in 5� steps from –45� to 45� horizontally.
All 3 positions were in a frontoparallel 50-cm distant (from the eyes)

tangential plane as this was the case for electrophysiological experi-

ments (Buneo et al. 2002; Pesaran et al. 2006). We calculated the HLU

(second) and population output (third) layer unit activity for each

combination of eye, hand, and target position (e.g., Fig. 11A,B). We then

computed the gradients of unit activity across all positions and for all 3

pairs of possible combinations of eye, hand, and target positions. For

example, the gradients in Figure 11A are generally directed downward,

that is, along the greatest rate of change. Doing this for all 3

combinations of eye, hand, and target position resulted in 3 gradient

fields that could be represented as local rates of change in unit activity

for each eye/hand/target position (we calculated the gradient at each

pixel of Fig. 11A,B). In order to extract a single index for the encoding

Table 1
Global network performance evaluated on N 5 10 000 test points

# HLU 3D compensation Network error (cm) RMSE # Training
points

R2 Slope Mean Standard
deviation

9 0.878 0.873 14.20 8.43 0.0417 15 000
16 0.936 0.934 10.06 6.58 0.0303 25 000
25 0.960 0.953 7.86 5.36 0.0249 45 000
36 0.972 0.963 6.44 4.75 0.0206 60 000
49 0.976 0.971 5.96 4.25 0.0192 80 000
64 0.982 0.975 5.23 4.05 0.0173 110 000
81 0.984 0.980 4.81 3.60 0.0162 140 000
100 0.992 0.989 3.25 2.73 0.0114 170 000
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scheme of each unit, we multiplied the direction of each gradient by

a factor 2 and then averaged across all gradient vector directions within

the gradient field. The direction of the resultant vector was then used

as an index indicating which encoding scheme was used, that is, either

encoding individual variables or encoding combinations of variables,

such as eye + hand or eye – hand (see also Buneo et al. 2002).

Results

Network Performance

Before analyzing the ‘‘neural mechanisms’’ within an artificial

network, it was first necessary to confirm that the network has

learned the relevant aspects of the task. The details of the 3D

visuomotor transformation of reaching are geometrically

complex and highly nonlinear, so we summarized the overall

performance of the network across all geometrical configu-

rations in the following ways. We will consider an example

network with 36 HLUs. Figure 4A shows a histogram of

absolute reach errors produced by the network for 10 000

arbitrary eye and head positions. As can be observed, the large

majority of absolute reach errors were smaller than 10 cm

(mean = 6.4 cm), which is similar to human behavior (e.g.,

Blohm and Crawford 2007). This confirms the good average

performance of the network.

We characterized the overall performance of all networks in

Table 1, as a function of the number of units in the second

(hidden) layer. As expected, the more second layer units there

were, the better the performance. This can be seen in the RMSE

value, which compares the desired to the observed activations

of the output. A more intuitive indicator is the network error,

where we indicated the mean reaching error in centimeters

produced by the neural network for a random subset of 10 000

test points that were generated in the same manner as the

training points (see Materials and Methods).

A quantitative analysis was performed using the 3D

compensation index, which assesses how well extraretinal

signals were taken into account in the visuomotor trans-

formation (see Materials and Methods). For example, Figure 4B

shows the 3D compensation produced by a typical 36-HLU

network, computed as a function of the predicted (optimal) 3D

compensation. The network produced observed 3D compen-

sation values closely matching the 3D compensation predicted

by our analytical model (Blohm and Crawford 2007). This can

be observed when considering the value of the slope between

observed and predicted 3D compensation values, which in the

case of a 36-HLU network (Fig. 4B) was 0.963. As can be seen

for all trained networks in Table 1, this slope provides the mean

percentage of compensation of eye/head orientations, and the

R
2 value gives an indication of the linear goodness of fit of the

data, that is, the fraction of variance accounted for. If the slope

was zero, the extraretinal signals would not have been taken

into account and the network would perform reaching

movements as though the eyes and head were straight ahead,

which would then produce large errors (Blohm and Crawford

2007). On the other hand, a slope of 1 would indicate that the

network on average fully accounted for the linkage geometry

of the body and performed accurately, within a precision

expressed by the R
2 value. Overall, Table 1 shows that all

networks performed reasonably well, with performance

improving along with the number of HLUs. In particular, the

performance of the 36-HLU networks was quantitatively similar

to that observed in real human subjects (Blohm and Crawford

2007). In the following sections, we will describe the network

behavior showing typical examples of the 36-HLU network

(because it performed similarly to human subjects) and we will

provide population results across all networks.

Network Analysis: General Considerations

The goal of this paper was to investigate the mechanism by

which reference frame transformations could be achieved with

distributed processing and to make predictions about expected

neural properties in brain areas involved in this process. To

answer the first part of this question in a way that is directly

relevant for neurophysiological studies, we assessed how

individual units in specific layers of the neural network

transform information through their input--output relation-

ships. To identify reference frames, we analyzed whether

a unit’s activity was modulated with eye or head position. For

example, a unit’s preferred direction for encoding the visual

input in gaze-centered coordinates would be independent of

eye and head position, whereas the preferred direction would

shift if the units used some other reference frame.

To investigate the individual units’ input--output relation-

ships, we chose to perform an analysis that was inspired by

Figure 4. Performance of a typical 36-HLU (second) network. (A) Histogram of
reaching errors produced by the 36-HLU network for a random test set of arbitrary
eye--head, hand, and target positions. The mean absolute reaching error was 6.4 ±
4.7 cm (mean reach magnitude5 53.8 cm). (B) Observed 3D compensation index as
a function of the ideal, predicted 3D compensation index. The 36-HLU network
accounted on average for 96% (see slope) of the extraretinal eye and head position
signals to adjust the gaze-centered motor plan to produce a correct shoulder-
centered movement.
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neurophysiological techniques. To obtain the input reference

frame of a unit, we aligned the unit’s activity with the visual

input (visual RF) and investigated how this visual RF was

modulated with eye and head position. To obtain the output

reference frame, 2 neurophysiological techniques were used:

1) alignment of the unit’s activity with the motor output

(motor field) and 2) using simulated microstimulation, which

sets the value of an individual unit’s activity artificially to the

maximum and looks at the effect this has on the motor output.

Using these 2 methods, we investigated whether the motor

fields or simulated microstimulation results were modulated by

different eye/head positions. We will provide more details

about each individual technique when describing them

hereafter.

Input Properties: Visual RFs

To begin, we investigated the input properties of the individual

units of the second (hidden) layer. To do this, we computed

the visual RF for each unit in this layer, which we did by

holding all hand-related inputs, as well as target retinal

disparity, vergence, eye, and head positions, constant. (Note:

because the encoding of initial hand and target positions are

strictly the same, all findings apply for both variables and we

only show the results of changing target position.) We then

presented targets at all possible horizontal and vertical visual

locations and computed the resulting activations of the HLUs.

Figure 5A--D shows examples of 4 typical second (hidden) layer

units’ RFs. We represented each unit’s activity by means of

a color code for each location within the 90� visual field. In

Figure 5A, for example, a target presented in the lower visual

field would activate this particular unit, whereas a target

presented in the upper visual field would result in very little

activation. Therefore, this particular unit’s visual RF is in the

lower visual field. This is indicated by the pink, black-bordered

square that shows the location of the center of mass of the RF.

Up to this point, one cannot make any conclusions about the

reference frame in which these units encode incoming visual

information. To do so, one has to change eye and/or head

position and investigate whether the RFs change their pre-

ferred location—that is, does the center of mass shift with eye/

head position? (Note: here, we only illustrate changes in eye

position. Head position is encoded in the same way as eye

position and provided qualitatively similar results.) To examine

the influence of eye position on the RF, we first plotted the

sensitivity vector (horizontal and vertical components only) in

the RF plots as black bars (Fig. 5A-E, see Materials and

Methods). The sensitivity vectors represent the direction in

which the eyes have to move in order to maximally modulate

the unit’s activity, and its size is proportional to the strength of

this modulation. Therefore, they indicate in which directions

we have to move the eyes in order to analyze the effect of eye

position on a second (hidden) layer unit’s activity.

We can make 2 predictions of what we might expect to find:

1) if the RF encodes visual information in gaze-centered

coordinates, that is, it is only important where targets are

relative to the line of sight but not where they are in space,

then the center of mass should be independent of eye position

or 2) if the visual RF encodes targets in shoulder-centered

coordinates, then the center of mass should shift in the

direction opposite of the eye orientation in order to maintain

a spatially stable code in body-centered coordinates.

We examined the influence of eye position on a typical

second (hidden) layer unit’s activity and plotted the activity of

the example shown in Figure 5E for different eye positions. For

easier comparison, we do not show the complete RF but only

a 2D slice through the minimum (indicated by the magenta

circle in Fig. 5E) and the center of the visual field (dotted white

line). The activity for straight-ahead eye position (as in Fig. 5E)

corresponds to the bold line in Figure 5F and shows a hill-like

pattern. As can be observed, changing eye position from –45� to
45� essentially gain modulates the unit’s activity (the activity

moves up and down) but does not much shift its location (left

or right in position), similar to the so-called gain field

mechanisms that have been observed in most parts of the

cortex involved in visuomotor transformations (Andersen et al.

1985; Zipser and Andersen 1988; Salinas and Abbott 1995). This

is the same for all second (hidden) layer units (shown later in

Fig. 7). Note that the changes in the shape of the RF across

Figure 5. Visual RFs in the hidden layer. Panels (A--E) show typical RFs from 5 HLUs
from a 36-HLU network. The activity (color coded) of each unit is plotted as a function
of visual target position (±90� horizontal and vertical range), whereas all other inputs
were kept constant, that is, central hand position, straight-ahead eye, and head
position and constant vergence. Landmarks such as the location of the maximum
(cyan cross), minimum (magenta circle), and the center of mass (black and magenta
square) of the unit’s activity are indicated. We also plotted the horizontal--vertical eye
position sensitivity vector (black bar), which indicates that the direction the eyes
would need to move to maximally influence the unit’s activation. The relative size of
these vectors indicates the relative amplitude of change with eye position. Thin black
lines represent isoactivity lines. (F) Activity of HLU #1 (panel E) along a cut through
the center of the RF and the position of the minimum (dotted white line in panel E).
Different lines indicate activity for different vertical eye positions between �45�
(down), 0�, and 45� (up). The bold line represents the 0� eye position.
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different eye orientations in Figure 7E were due to the

saturation of the sigmoid transfer function. Because there is

almost no shift in these unit’s RF locations (i.e., the centre of

mass did not change with eye position), we will interpret this

as a gaze-centered encoding scheme.

We also examined the input reference frame in the third

layer, that is, the population code of the desired movement

vector, by again investigating the influence of eye position on

the RFs of this layer. To do this, we considered how the RF

varied with horizontal and vertical eye position in an example

unit. This is shown in Figure 6A--I for a typical third layer

unit, #18. Panel (E) shows the visual RF of this unit for

a straight-ahead eye position. As can be seen in panel (F), if the

eyes move 40� to the right, the RF shifts to the left. This can be

seen by observing the change in the position of the centre of

mass (pink, black-bordered square). Likewise, if the eyes rotate

40� to the left, the RF shifts to the right (panel D). Similar

behavior can be observed for vertical (panels B and H) and

consequently also for oblique eye positions (panels A, C, G,

and I).

To obtain the entire representation of the RF shift for

different horizontal and vertical eye positions, we changed eye

position in a more systematic fashion, that is, in 5� steps

independently for the horizontal and vertical directions. For

every eye position, we computed the horizontal and vertical

position of the RF, quantified by the center of mass position.

We then plotted the relative positions of the center of mass

positions in Figure 6J for the example unit #18 shown in panels

(A--I). Each dot represents one center of mass position, and

dots from adjacent eye positions are connected through the

solid line. Thus, the intersection of the horizontal line

corresponds to the straight-ahead eye position example of

panel (E). The center of mass moves to the right (left) when

the eyes move left (right) and up (down) when the eyes move

down (up). Clearly, this unit seems to shift its RF toward

maintaining a spatially stable representation of the visual

object. Therefore, we conclude that this unit uses an input

code that approaches shoulder-centered coordinates.

In the next step, we further quantified the RF shift to

perform a more formal reference frame analysis. We performed

a regression analysis on the center of mass shift (as shown in

Fig. 6J) as a function of horizontal and vertical eye position for

each unit in the neural network. This regression analysis

provided a gain factor indicating the extent to which eye

position modulated the position of the center of mass. If

there is no center of mass shift, then the gain factor is zero,

indicating gaze-centered coding. If the gain factor is –1, then

the RF shifts in the opposite direction and by the same amount

as the eye orientation and, thus, maintains a spatially stable

representation, that is, codes positions in shoulder-centered

coordinates.

The result of this analysis is shown in Figure 7, where we

plotted the horizontal and vertical centre of mass gains for

horizontal (Fig. 7A) and vertical (Fig. 7B) eye movements. Each

dot represents the behavior of one unit of the third layer of our

36-HLU neural network, that is, the population output. For

horizontal eye movements, we observed a large distribution of

horizontal shift gains and a narrower distribution of vertical

shift gains (see histograms on the axes). In contrast, vertical eye

movements (Fig. 7B) resulted in a narrower horizontal gain

distribution and a broader vertical center of mass shift gain

distribution. This means that eye movements mainly result in

shifts parallel to the eye movement but also modulate the visual

RFs in the orthogonal direction to a smaller degree. For

example, a horizontal eye movement can also evoke vertical RF

shifts, although the RF shift is predominantly horizontal at the

population level.

To quantify the overall range of shift gains, we used the

horizontal gain related to the horizontal eye position change

and plotted it as a function of the vertical shift gain evoked by

the vertical eye position change (Fig. 7C). The gray box

indicates the range of the observed gains across all third layer

(population output) units, and the cross shows the mean value

for this 36-HLU network. In Figure 7D, we show the range of

gains represented in the same way as in panel (C) for all

network sizes. We observed a broad distribution of gain values

in all networks as shown by the histograms. A purely gaze-

centered unit would have horizontal and vertical gain values of

zero, whereas a shoulder-centered coordinate frame would

result in gain values of –1. We interpret this large range of gain

values as reflecting different units whose input sensitivity is not

fixed with respect to one particular reference frame but rather

Figure 6. Visual RF modulation of population code unit #18 as a function of eye
position. Panels (A--I) show RFs of the same unit plotted in the same manner as in
Figure 5 but for different horizontal and vertical eye positions. Magenta and black
squares, center of mass; black bar, motor sensitivity vector, that is, the movement
direction toward which this unit contributes most (only horizontal and vertical
component). Eye positions in degrees were (horizontal, vertical) (A) (�40, 40), (B) (0,
40), (C) (40, 40), (D) (�40, 0), (E) (0, 0), (F) (40, 0), (G) (�40, �40), (H) (0, �40),
(I) (40, �40). (J) Representation of the horizontal and vertical shift of the center of
mass as a function of horizontal and vertical eye positions in 5� steps (black dots). For
this unit, for example, if the eyes moved rightward, the center of mass moved
leftward (left is left and up is up).
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is weighted between gaze-centered and shoulder-centered

coordinates. This has sometimes been called an ‘‘intermediate

reference frame’’ (e.g., Buneo and Andersen 2006). These

results can be compared with the results of the same analysis

performed on the second (hidden) layer of the 36-HLU

network (Fig. 7E) and for the different sizes of neural networks

used in this study (Fig. 7F). This confirms the findings from

Figure 5 showing only close to gaze-centered reference frames

for the visual RFs.

Output Properties: Motor Fields

Up to this point in the analysis, we have analyzed the input

reference frame for each unit in the hidden layer (second

layer) and the population output layer (third layer). In general,

one tends to assume that a properly tuned visuomotor network

should contain units whose visual and motor tuning is aligned

(so that vision results in corresponding movement), but in

networks involved in coordinate frame transformations, there

is good reason to believe that neural populations and even

individual units should deviate from this scheme (Pellionisz and

Llinas 1985; Pellionisz and Ramos 1993; Crawford and Guitton

1997; Pouget and Sejnowski 1997; Pouget and Snyder 2000;

Smith and Crawford 2005). In particular, in 3D reference frame

transformations, visual input in eye coordinates misaligns with

the behavioral output in shoulder coordinates as a function of

the orientation of the sensor relative to the shoulder (Klier and

Crawford 1998; Crawford et al. 2000), and there should be an

underlying neural mechanism to account for this. Because our

network was trained to perform such a 3D transformation

(Blohm and Crawford 2007), we hypothesized that the hidden

layers of the network would show different input and output

properties, even at the level of individual units. To test this, we

investigated 2 output properties of the neural network units.

We first considered motor fields. As opposed to visual RFs,

where the activity of a unit is correlated with the visual input,

in a motor field, the unit activity is instead correlated with the

3D movement direction in space.

Motor fields thus provide information about the motor

output of a unit, that is, how a unit’s activity changes as

a function of the movement produced. To compute motor

fields, we have to produce movements covering all 3

dimensions of space and measure a unit’s activity related to

those specific movements. To accomplish this, we will align the

unit’s activity with the produced motor output (instead of

aligning it with the visual input as for the visual RFs). If a unit

preferentially participates in generating movements directed to

a specific location in space, we expect a unit to display

a preferred direction, meaning that it would discharge most

when movements are oriented to that certain portion of 3D

space.

Let us first consider a typical example motor field from HLU

#17 of our 36 HLU network. Because 3D motor fields are

difficult to represent graphically, we will show in Figure 8A-C,

a 2D cut through the direction of maximal activity (measured

for straight-ahead eye and head position) in order to

demonstrate directional and amplitude tuning of motor fields

with eye position. We will then proceed in the same manner as

for the visual RF analysis and change eye/head position to see

how the motor field changes. Figure 8 shows the motor field for

40� leftward eye position (panel A), straight-ahead eye position

(panel B), and 40� rightward eye position (panel C). The motor

field can be seen to change for different eye positions. Indeed,

eye position affected both the preferred direction of the motor

field (red lines), which rotated in the direction of the eye

movement, and the amplitude of the motor field in a gain-like

fashion, that is, the cosine tuning became smaller in amplitude

when the eyes moved rightward. Because the preferred

direction (in spatial coordinates) shifted with eye position, it

means that the movement vector was approximately constant

relative to gaze. Indeed, the preferred direction of the motor

field rotated by 69.6� for a 80� total eye orientation change.

Figure 7. Reference frame analysis of the hidden layer and population code using
RFs. (A) RF shift gains (horizontal and vertical) for horizontal eye movements. Each dot
represents the gain of one unit in the population code of a 36-HLU network. The red
dot depicts unit #18 analyzed in Figure 6. Zero gain values indicate gaze-centered
coding; a horizontal gain value of �1 would classically be interpreted as shoulder-
centered (or space fixed) coding. (B) Same representation for vertical eye
movements. Here, a vertical gain value of �1 would be shoulder-centered coding.
(C) Combined horizontal and vertical shift gain for the same population code. The
vertical gain for vertical eye positions is plotted as a function of the horizontal gain for
horizontal eye movements in order to capture the main properties of the RF shifts. The
gray square indicates the range of obtained gain values for this 36-HLU network and
the gray cross depicts the mean gain. (D) Summary of gain values through the
population codes of all networks. The colored numbers shown to the right of the
graph indicate the network sizes. Squares that go beyond the limits of the graph are
semitransparent. In all network sizes, there is a wide variety of gain values present for
the population code layer. (E--F) The same analysis for the HLUs for comparison. Panel
(E) shows the details for the example 36-HLU network and panel (F) summarizes the
behavior of all networks.
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Therefore, we interpret this unit’s motor field as displaying

a reference frame close to gaze-centered coordinates. In

addition, the change in amplitude gain values with different

eye positions suggests eye/head position gain modulation.

We evaluated the influence of eye position on the motor field

direction and amplitude for each unit in the hidden (second)

and population output (third) layer (see Materials and Methods

for details of our calculations). The procedure was similar to

that used for the visual RFs. Figure 8D shows the ranges of the

rotational gain for the hidden (second) layer of all different

network sizes, presented in the same way as in Figure 7D,F. We

observed a large range of rotational gain values that often

extended to values larger than 1 (a gain value of 4 means that

from 45� leftward to 45� rightward eye position the motor field

would have performed one complete revolution, i.e., a 90� eye
position change would result in a 360� preferred direction

change). Similarly, we also observed a large range of ‘‘amplitude’’

gain values, shown in Figure 8E. Here, a gain of 1 means that the

motor field is modulated maximally across the complete range

of possible values (between 0 and 1). In contrast, a gain of

0 means that eye position does not affect the amplitude of the

motor field. The sign of the amplitude gain was chosen such

that a positive gain meant an increase in amplitude for an

upward or rightward eye orientation. Overall, the HLUs (second

layer) show large amplitude gain modulation of the motor fields

(Fig. 8E). In addition, the neural network uses a mixture of any

imaginable reference frame in the individual HLUs (second

layer) in terms of the unit’s contribution to the motor output,

that is, gaze-centered, shoulder-centered, and reference frames

intermediate between gaze and shoulder centered (Fig. 8D). It

is difficult to interpret these large rotational gains in terms of

reference frames. As a general observation, the networks used

the complete parameter space to flexibly obtain the required

behavior and combined these different representations at the

population level in a purposeful fashion by making use of the

amplitude gain modulations.

We observed broadly distributed behavior for the motor field

reference frame analysis of the population output (third) layer

units similar to what we have found in the hidden (second)

layer. This is shown in Figure 8F for the rotational gains

indicating the preferred direction change with different eye

positions and is also present in Figure 8G for the amplitude

gains describing the scaling of the motor fields with changes in

eye position. Although both layers showed cosine-tuned

properties, they did not use any particular identifiable

reference frame. This is particularly surprising for the

population output (third) layer that was (indirectly) designed

to encode movement vectors in shoulder-centered coordinates

(see Discussion). Therefore, in the classical view of motor fields

addressing the output reference frame, one would have

expected to find purely shoulder-centered coordinates.

Output Properties: Simulated Microstimulation

Another method to assess the output properties of individual

units is to simulate microstimulation in the network. Micro-

stimulation primarily modifies the neural network downstream

of the locus of stimulation (Pare and Wurtz 1997; Tehovnik

et al. 2003; Smith and Crawford 2005), and we can therefore

use this method to investigate the output properties of the

individual units stimulated. Compared with the motor fields,

which correlate the activity of a unit to the movement vector

without making any statement about the downstream connec-

tivity, microstimulation directly addresses the contribution that

a particular unit makes toward the generation of the

movement. Thus, given the difference between these techni-

ques, we wondered if simulated microstimulation would reveal

properties different from both the sensory and motor tuning of

the units. In microstimulation experiments, such differences

are often attributed to the stimulation-induced, nonphysiolog-

ical activation of axon pathways (instead of the neurons), but

here in our simulations, we were able to constrain activation to

only the physiologically relevant outputs.

In this section, we will specify a 0-cm visual desired

movement vector to the network (so that the network would

naturally not produce any movement), and we keep the visual

hand and target input constant, at a zero horizontal and vertical

Figure 8. Motor field reference frame analysis for hidden layer and population code.
(A--C) A 2D cut through a typical HLU motor field (unit #17) in the 36-HLU network
(normal vector of plane: [0.14; �0.29; 0.95]). The unit’s activity is plotted in polar
coordinates (maximum activity 5 1) as a function of movement direction relative to
the theoretical preferred direction of this unit (mean and standard deviation, see text
for details). (A) Eyes at �40� (to the left). (B) Eyes at primary position (0�). (C) Eyes
at 40� (to the right). The red lines indicate the reconstructed tuning direction from the
cosine function fit. The solid red line corresponds to the tuning curve in panel (B) The
dotted and dashed lines stand for the tuning curves in panels (A, C) and are
superimposed on panel (B) for clarity. The different red lines show that this unit’s
tuning direction and amplitude change with eye position. (D) Quantification of the
rotational gain modulation of the tuning with horizontal and vertical eye position
(same representation as Fig. 7D,F) for the hidden layer for all networks. (E) Amplitude
gain modulation of the hidden layer for all networks with eye position. (F) Rotational
gains for the population code layer across all networks. (G) Amplitude gain ranges for
the population code layer for all networks.
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retinal angle and both at 30-cm distance from the eyes. We

then apply simulated microstimulation to individual HLUs

(second layer) or population output (third) layer units in order

to evoke a movement. Microstimulation consisted in setting the

specified unit’s activity arbitrarily artificially to 2 (we chose

a value >1, the upper limit to a unit activity in ordinary network

functioning, in order to ensure large enough stimulation-

induced movement vectors). To perform a reference frame

analysis, we repeated this procedure for different eye positions

so as to allow us to observe the effect of eye position on the

simulated microstimulation results.

Four typical results of this analysis are shown in Fig. 9A-D, for

microstimulation applied to 4 different HLUs (second) of our

example 36-HLU network. Each individual black line represents

one movement vector for each eye position, which ranged

from –45� to 45� in 5� steps. Intuitively, the starting position of

these vectors should change with eye position because the

hand position (in shoulder-centered coordinates) has to

change to follow eye position. In other words, in order to

maintain the same retinal input (same location on the retina)

across changes in eye position, hand position in shoulder-

centered coordinates must move with the eye. The end points

of all stimulation-induced movement vectors were connected

by the colored lines. Because our microstimulation changed

only the activity of one single unit, this gives an indication as to

the nature of the unit’s contribution to the movement vector.

(Note: Although it is not possible to stimulate a single unit

experimentally, the results should in principle be comparable

to the effect of activating units with similar properties in

a topographically organized region of cortex.)

We observed 4 different types of behaviors. Figure 9A shows

an example of HLU #10, where the movement vectors were

parallel when microstimulation was applied, irrespective of

the change in eye position. We labeled this a fixed-vector

movement because the movement vector appears to be in the

same direction regardless of different eye positions. (The top

part of each panel represents a view from above, the lower

part a view from behind.) Another typical result is shown in

Figure 9B for microstimulation of HLU #19. In this case, the

evoked movement tightly followed eye position, and we, thus,

labeled this example gaze dependent. Figure 9C depicts an

example for unit #20 that showed an intermediate behavior

midway in between the fixed-vector (panel A) and gaze-

dependent (panel B) examples. Here, we still observed some

rotation of the stimulation-evoked movement vector with eye

position but to a smaller extent than eye movement amplitude.

Finally, we also found units for which the movement vector

evoked through microstimulation converged at a particular

location in space (Fig. 9D). We labeled this example a goal-

directed movement.

We interpreted the fixed-vector example of Fig. 9A as showing

shoulder-centered coordinates because the stimulation-induced

movement vector did not depend on eye position but rather

produced an approximately constant movement in space. In

the typical example in Fig. 9B, the microstimulation-evoked

movement vector tightly followed eye position for eye orienta-

tion in the horizontal direction. Therefore, this example unit

shows a gaze-centered output when tested through simulated

microstimulation because the resultingmovement vector can be

interpreted as being constant in gaze-centered coordinates. As

Figure 9. Reference frame analysis through simulated microstimulation of hidden layer and population code units. (A--D) Typical examples of movements generated through
simulated microstimulation of individual units under different horizontal eye positions. The movement vector defined in the visual input had zero (0 cm) amplitude. Black lines
represent the obtained movement vectors in space (colored bold lines connect endpoints) if the indicated unit (here HLUs of the 36-HLU network) was microstimulated under
different horizontal eye positions between �45� and 45� (5� steps), that is, the activity of this unit was artificially set to 2. The top part of the panels represents the top view (X,
horizontal; Y, forward) and the lower part shows the behind view (X, horizontal; Z, vertical). We found 4 types of generated movements, that is, fixed-vector movements (panel
A), gaze-dependent movements (panel B), a behavior intermediate between fixed-vector and gaze-dependent (panel C) and goal-directed movements (panel D). (E) The horizontal
and vertical rotational gain modulation due to horizontal and vertical eye position changes during stimulation, respectively, is shown for each HLU of the 36-HLU network. Colored
dots indicate the examples shown in panels (A--D). (F) Summary of the rotational gain ranges for the HLUs of all networks (same representation as Figs 7D,F and 8D,F). (G) The
same analysis as in panel (F) but for the population code units.
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a consequence, the example in Fig. 9C shows behavior that is

intermediate between the predictions a unit working in gaze-

and shoulder-fixed coordinates. Finally, Fig. 9D would result

from a reference frame that is opposite to gaze centered (one

might call it anti--gaze centered) because the rotation of the

evoked movement vector is opposite to eye orientation.

To quantify these observations, we proceeded in a similar

fashion as for the visual RF and motor field analysis. We

performed a regression analysis between the angular deviations

of the stimulation-induced movement vectors for different eye

positions in the horizontal and vertical directions. This resulted

in rotational gain values that could be interpreted with respect

to reference frames, that is, a gain of 1 indicates gaze-centered

coordinates and a gain of 0 indicates shoulder-centered

coordinates. Figure 9E shows the result of this analysis for all

HLUs (second) of our example 36-HLU network, plotting the

vertical stimulation-induced deviation gain (regression with

vertical eye position) as a function of the horizontal gain

(regression with horizontal eye position). We observed a large

range of different gain values indicating that the hidden layer

uses a mixture of different reference frames intermediate

between gaze- and shoulder-centered coordinates (see histo-

grams on the axes). This was consistent across all our networks

(Fig. 9F). However, the same analysis performed on the

population output (third) provided results similar to the

example shown in Fig. 9A, and we observed only gain values

close to 0 (Fig. 9G). Thus, the output properties of the

population output layer only showed close to shoulder-

centered coordinates when tested through simulated

microstimulation.

Global Encoding Schemes

Up to this point, we have analyzed the different units’ apparent

reference frames across different electrophysiologically in-

spired techniques. However, we have only focused on gaze-

versus shoulder-centered coordinates and univariate effects

(e.g., eye movements in isolation). In this section, we perform 2

additional analyses, first investigating apparent reference

frames when including head movements and second addressing

relative encoding of movement vectors with respect to eye,

hand, and target.

To discriminate between eye-centered, head-centered, and

shoulder-centered encoding, we performed a more detailed

analysis across all 3 electrophysiological techniques. We used

the same analysis techniques as in the previous 3 sections but

now changed eye and head orientations. In order to be able to

discriminate between eye-, head-, and shoulder-centered

encoding, we had to use 3 different conditions, that is, eye-

only movements, head-only movements (eye-in-head orienta-

tion remained constant), and opposite eye--head movements

(like in the VOR). This trivariate analysis explicitly tests for all 3

predictions, whereas one prediction would have to be deduced

indirectly from a bivariate analysis, which does not work for the

nonlinear behavior of our units (i.e., there is no linear

relationship between the three encodings). Table 2 shows

the predictions of expected RF shift gains, motor field shift

gains, and movement vector rotation gains during micro-

stimulation for the 3 types of movements assuming encoding in

either eye-, head-, or shoulder-centered coordinates. We then

plotted the model unit gains for changes in eye position, head

position, and combined VOR movements in a trivariate plot

(each gain corresponding to one axis). In order to best

discriminate between the apparent reference frames, we then

rotated this 3D plot into a view orthogonal to the plane

spanned by the 3 predictions.

Figure 10 shows the result of this analysis in a 3D plot for the

HLUs (second layer, panels A--C) and population output (third

layer, panels D--F) of the example 36-HLU network and only

considering horizontal movements (qualitatively the same

results were observed for vertical movements, data not shown).

For each technique, the view of this 3D representation was

orthogonal to the plane spanned by the 3 predictions of the

corresponding technique as shown in Table 2. Colored

dots correspond to the 3 predictions and black dots are data

points from individual network units. We reproduced our

findings from the previous analyses. In addition, we now show

that some units reveal close to head-centered behavior;

however, most units show encoding in a partially head-

centered but closer to shoulder-centered reference frame

when probed using motor fields (both for HLUs and population

code units) or microstimulation (for HLUs). This was remark-

able because there never was any explicit head-centered

encoding in the network’s input or output. Nevertheless, head-

centered--like encoding did emerge in a 3D network involved

in visuomotor reference frame transformations for reaching.

Another interesting observation concerned the individual

movement gains obtained. Indeed, all 3 movement conditions

generally resulted in gain changes. For example, RFs of the

population output units also shifted in the head movement

condition (Fig. 10D). However, this head movement--related RF

shift was along a global direction that was inconsistent with the

predictions of head-centered encoding (green dot). Therefore,

observing movement-related gain changes does not automati-

cally determine the encoding scheme; rather, a full multivariate

analysis is required (see Discussion).

In order to test our modeling approach against known

physiological results and to compare our findings with

a different view of movement encoding (i.e., absolute vs.

relative position encoding), we analyzed the response field

gradients. Response field gradients have recently been used to

characterize encoding schemes of neurons in the parietal

cortex (area MIP, medial intraparietal area) (Buneo et al. 2002)

and the PM cortex (Pesaran et al. 2006). Briefly, this method

calculates RF changes across eye, hand, and target position

and infers the reference frame of a unit from the pattern of

modulation observed across the different movements (see also

Materials and Methods). It mainly addresses whether a unit

encodes the absolute position of one variable (i.e., hand, eye, or

target position) alone, independently of any other variable, or

whether it uses a relative encoding scheme representing one

variable relative to another.

Table 2
Predicted gains for reference frames

Movements Ref. frames Eye Head VOR

RFs
Eye centered 0 0 0
Head centered �1 0 1
Shoulder centered �1 �1 0

Motor fields and microstimulation
Eye centered 1 1 0
Head centered 0 1 1
Shoulder centered 0 0 0
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Figure 11 illustrates the results of the response field gradient

analysis for our 100-HLU network (we used the 100-HLU

network to have more units and thus better distributions).

Panels (A) and (B) show typical HLU (second layer) and

population output unit (third layer) activation, respectively, for

changes in hand and target positions. For example, the HLU

activity in Figure 11A changes with initial hand position but is

invariant across target position. This points toward an in-

dependent encoding of hand position. Other HLUs also show

the inverse pattern, that is, independent encoding of the target

position. In contrast, the activity in the typical population

output unit (Figure 11B) shows a local maximum for a specific

combination of hand and target positions. This was the case for

most of the population output units and indicates that these

units code the relative position of hand and target and not their

individual absolute position, as this was the case in the hidden

layer (panel A).

From this pattern of activation across eye, hand, and target

positions, we computed the response field gradient for each

unit (see Materials and Methods) and analyzed this index with

respect to reference frames. The result of this analysis is shown

in Figure 11C--D for HLUs (panel C) and population output

units (panel D). The first column in Figure 11C depicts the

encoding of the target with respect to eye position (the head

was fixed in this analysis). As can be seen from the average

vector (magenta), HLUs mostly encode target position relative

to where the eyes are. The same is true for the encoding of

hand position (middle column). However, for the relative

encoding of hand and target position (third column), the

situation changed. HLUs only showed either absolute hand or

absolute target position encoding (like in Fig.11A), but no

relative encoding of hand and target position (as this was the

case for the population output example in Fig. 11B). The first 2

columns of Figure 11D show an encoding scheme in the

population output units that was similar to those of the HLUs,

that is, hand and target position were encoded relative to the

eye. Although, on average, HLUs encoded target position or

hand position relative to the eye but not target position relative

to the hand, the population output units differ in that they do

encode target position relative to the hand (third column of

Fig. 11D).

For both a gaze-centered and shoulder-centered reference

frame, one expects the same result for the first and second

column of panels (C) and (D), that is, an encoding of the target

and initial hand position relative to gaze position, which results

in a downward population average (see Pesaran et al. 2006).

Indeed, regardless of the reference frame used, the position of

the hand and target is specified in retinal coordinates, that is,

the difference between the spatial hand or target position and

current eye (or more generally gaze) position. This was

approximately true in our network data. (Note: If initial hand

position was encoded relative to the shoulder in the input of

our network, the prediction would be different here.)

However, for the third column showing the interdependence

of hand and target position, the prediction differs between

encoding schemes. Although one could argue that relative

position codes could exist in any reference frame, it is more

likely that these relative codes emerge closer to the motor

output. Therefore, we believe that a shoulder-centered

representation would be consistent with a relative encoding

scheme of hand and target position and predict a downward

population average (Pesaran et al. 2006), whereas a gaze-

centered encoding would predict independent encoding of

hand and target position, that is, a horizontal (pointing to either

side) direction for the population (Buneo et al. 2002; Pesaran

et al. 2006).

In this view, HLUs (Fig. 11C) show gaze-centered encoding

of either the initial hand or target position (third column), but

Figure 10. Eye- versus head- versus shoulder-centered frames of reference. The 3D plot depicts gain modulations of each individual unit (black data points) in the example 36-
HLU network for eye, head, and VOR movements. Colored data points represent predictions for eye-centered (red), head-centered (green), and shoulder-centered (blue)
coordinates. The view of the 3D plot was chosen to be orthogonal to the plane of the 3 predictions. The different panels show results for all 3 electrophysiological techniques, that
is, RFs (A, C), motor fields (B, D), and microstimulation (C, F), for HLUs (panels A--C) and population code units (panels D--F).
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never both together, whereas population output layer units

(Fig. 11D) show on average shoulder-centered coordinates, but

with a wide spread toward gaze-centered coordinates (third

column). In summary, our network was able to reproduce

previous electrophysiological findings from PM and parietal

areas, and this even when probing unit properties using relative

position codes instead of absolute encoding schemes.

Synthesis of Unit and Layer Properties

One important property of the individual units in our network

was the consistent difference in their input--output coding,

depending on how they were examined. For example, units in

the hidden layer showed purely gaze-centered visual RFs (input

coding, Figs 5 and 7E,F), but in their output, they displayed

a range of different reference frames distributed between and

beyond gaze- and shoulder-centered coordinates. This was true

for the motor fields (Fig. 8A--E) and for simulated micro-

stimulation (Fig. 9A--F). Similar observations were made for the

population output layer. Thus, different input--output relations

were observed within each layer. Interestingly, this was also the

case within individual units of each of these layers. In other

words, each unit typically displayed different reference frames

when tested with different electrophysiological techniques.

Thus, each unit performed a fixed input--output transformation

(i.e., a fixed mapping between the sensory RF-related inputs

and the resulting output of a given unit as probed by motor

fields or microstimulation), and so the visual (input) and motor

(output) codes did not align.

These individual transformation modules are essential to the

performance of the network. This can be traced to the

fundamental aspects of the reference frame transformation

that we trained the network to perform. As described in more

detail in our previous paper (Blohm and Crawford 2007), the

3D visuomotor transformation for arm movements requires

a nonlinear conversion of sensory desired movement vectors in

gaze-centered coordinates into nonidentical movement vectors

in shoulder-centered coordinates, as a function of eye and head

configuration. A network composed of fixed, but aligned local

input--output mappings (for each individual unit), could not

perform such a transformation no matter how these local

transformations were combined. Mathematically, this means

that if the sensory and motor reference frames are equal, then

no reference frame transformation had taken place. Thus, the

transformation modules are used as components for the overall

transformation at the population level. Only by combining fixed

transformation modules in different ways, could one achieve

different global transformations at the population level.

The remaining question is how were these fixed trans-

formation modules correctly combined to produce the global

reference frame transformation? The answer to this question

relies in the second important property in our network, which

was the existence of gain modulation. Indeed, the activity of

many of the HLUs (second layer) and population output (third)

layer units in our neural network was largely modulated by eye,

head, and hand position signals in a gain-like fashion (Andersen

et al. 1985; Zipser and Andersen 1988; Salinas and Abbott

2001). This has been observed in real neurons in the brain (e.g.,

in PPC) and indicates the potential involvement of this part of

the brain in reference frame transformations for reaching

(Andersen et al. 1985; Galletti et al. 1995; Battaglia-Mayer et al.

2001; Buneo et al. 2002). Gain modulation was present

throughout the network, across all layers (hidden layer: Figs

5F and 8E; population output: Fig. 8G) and was mediated by the

additional inputs to the network (eye position, head position,

vergence) which when combined with the fixed input--output

mappings produced the gain modulation. We hypothesized that

these gain modulations allowed the network to weight the

contribution of each unit’s fixed transformation (different

input--output coding) in a way to accurately produce the

complete overall transformation.

Figure 12 tests and illustrates this hypothesis by directly

showing how gain modulation in the hidden (second) and

population output (third) layer contributes to the construction

of the overall reference frame transformation. We chose 2

typical situations, 1) using the same retinal movement vector to

produce 3 different movements in space for different head roll

angles (Fig. 12A) and 2) producing the same movement vector

in space from 3 different visual inputs and head roll angles (Fig.

12B). Because in the first condition (Fig. 12A), all inputs but the

head roll angle were held constant, potential modulations of

HLU (second layer) activity must be due to a change in head

roll. Therefore, head roll weighted the contribution of these

HLUs fixed input--output transformations to the overall

reference frame conversion. However, the activity modulations

in the population output (third) layer units (Fig. 12A) resulted

from a combination of gain modulation and different motor

outputs. Conversely, in the second condition (Fig. 12B), the

Figure 11. Gradient analysis of reference frames for a 100-HLU network. (A)
Activation of a typical HLU for 0� eye position as a function of hand position and
target position. Blue indicates not active, red stands for maximally activated. (B)
Same representation for a typical population output unit. (C, D) Results of the gradient
analysis for HLUs (panel C) and population output (panel D) units. The three columns
represent the 3 possible combinations of eye position (E), target position (T), and
initial hand position (H). The black rose histogram shows 15� bins. The magenta line
represents the population mean over all units.
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motor output was constant and modulations of the population

output (third) layer units’ activity therefore had to originate

from gain modulation through the input. In this case, the third

layer units received gain modulation to weight the contribution

of those units to the motor output, thus weighting the fixed

transformations modules differently. Finally, the activity mod-

ulations in the HLUs (second layer) (Fig. 12B) resulted from

a combination of gain modulation and different visual inputs.

As can be observed from Figure 12A, most of the example

HLUs’ (second layer) activity was—at least to some extent—

modulated by the head roll angle (these are the same example

units as shown in Fig. 4), whereas all other inputs to the

network were held constant. The activity of most HLUs

(second layer) changed for different head roll angles and as

we have shown in Figures 5 and 7E--F, this change in activity

was not due to a RF shift but could only result from gain

modulation. As already mentioned before and shown in Figure

8G, we also observed gain modulation in the population output

layer. This can be seen in Figure 12B, where the typical

example population output units’ activity was modulated by

head position (and also the visual target position) despite

producing the same movement vector. The same principle

applies for any arbitrary combination of visual target, hand

position, and eye--head configuration. Thus, from our analysis,

we conclude that gain modulation at every level of the network

was crucial to combine the contributions of different fixed

transformation modules of individual units as parallel compo-

nents in order to produce the global transformation required in

the network’s overall input--output mapping.

To summarize these results at the population level of our

network (Fig. 2D), units in the hidden (second) and population

output (third) layer had visual RFs with activations that—at the

population level—covered all different parts of visual space. In

addition, the HLUs had purely gaze-centered inputs (visual RFs)

and their output properties reflected mixed, intermediate

properties between gaze- and shoulder-centered coordinates

(motor fields and microstimulation). The population output

units also showed mixed, intermediate input properties. When

tested using motor fields, the output properties of this layer

showed mixed reference frames; however, simulated micro-

stimulation displayed purely shoulder-centered output coor-

dinates for the population output layer. Therefore, we

conclude that individual units transformed information through

fixed input--output relationships. The complete reference

frame transformation was performed by summation across

these fixed transformation modules at each processing level,

weighted in a gain-like fashion using eye, head, vergence, and

hand position signals.

Discussion

We trained a physiologically inspired artificial neural network

to perform the 3D visuomotor transformation from gaze-

centered inputs to a shoulder-centered output as required for

geometrically accurate reach planning (Fig. 2A, Blohm and

Crawford 2007). The network was able to perform this

complex nonlinear transformation and it did so in a gradual,

distributed fashion. Different methodologies, that is, whether

we used visual RFs (testing the input properties of units),

motor fields, or microstimulation (both testing different output

properties of units) provided different reference frames within

the same units in a particular network layer (Fig. 2D). These

results help to highlight and explain the fundamental differ-

ence between the 3 main techniques available to systems

electrophysiologists and demonstrate that it is critical to be

aware of these differences when comparing results obtained

with different approaches. In addition, separately probing the

sensory and motor reference frames of individual units allowed

us to show how individual units implement fixed reference

frame transformation modules that can be combined in a gain-

weighted fashion to produce an overall transformation at the

population level. Some of these observations have been made

before either theoretically or experimentally; this is the first

study to synthesize all of them and show how they arise

naturally as a consequence of solving the specific geometric

problems for 3D reach.

Neurophysiological Significance

Our working hypothesis was that the hidden layer would

represent PPC areas that have been suggested to be involved in

transforming these early visual signals into motor plans (e.g.,

Caminiti et al. 1998; Burnod et al. 1999; Snyder 2000; Buneo

Figure 12. Activity gain modulations in the network. (A) The same retinal target
position produces 3 different movement vectors for 3 different head roll angles. The
activity of 5 typical HLUs (same units as in Fig. 5) and population output units (same
units as in Figs 8 and 9) is shown for each condition. Eye position was zero and initial
hand position was at the fovea. Target and hand position were on a 50-cm distant
tangential plane. (B) Three different retinal target positions are presented for 3
different head roll angles so as to produce the same movement vector in space. The
activation for the same units as in panel (A) is shown.
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et al. 2002; Battaglia-Mayer et al. 2003; Crawford et al. 2004;

Buneo and Andersen 2006). On the other hand, we hypothe-

sized that the population output layer represented the PM

cortex (Kalaska et al. 1997; Kakei et al. 2001, 2003; Scott 2001),

and we designed this layer—through the readout mecha-

nism—to mimic neural properties in the PM cortex (see

Materials and Methods).

Within the limits of this simple network architecture, we

were able to reproduce and explain many findings of real

neurons in the frontal--parietal network and clarify certain

controversies in the field. For example, the visual RFs of

different regions in the superior parietal lobe are known to

encode target position in gaze-centered coordinates (Johnson

et al. 1996; Batista et al. 1999; Caminiti et al. 1999; Battaglia-

Mayer et al. 2001, 2003; Buneo et al. 2002; Pesaran et al. 2006).

The same scheme is likely used to encode hand position

(Crammond and Kalaska 2000; Buneo et al. 2002). However,

aligning the neural activity in those same areas with the hand

movement vector (motor fields) revealed mixed, intermediate

properties that fall between reference frames (Battaglia-Mayer

et al. 2001, 2003). In addition, electrical microstimulation of

PPC produces complex movements that might reflect such

‘‘hybrid’’ reference frames (Cooke et al. 2003; Stepniewska et al.

2005). Our model explains these seemingly incompatible

observations between the sensory and motor reference frames

of units in the same PPC areas as being the result of the

inherent properties of individual neurons involved in reference

frame transformations. Therefore, using different experimental

techniques addressing distinct inherent properties of a neural

network can lead to incompatibilities of observed results.

One interesting aspect of our model was that some units of

our network displayed an apparent head-centered reference

frame when probed using motor fields or microstimulation

(Fig. 10). This was remarkable because neither in the input nor

in the output there was information explicitly using this

reference frame. Furthermore, although head-movement--re-

lated gain modulation has been described for neurons in PPC

(Brotchie et al. 1995, 2003), head-centered reference frames

have only been reported when probing the units’ motor fields

(Battaglia-Mayer et al. 2003) and have never been observed

when mapping out visual RFs (e.g., Batista et al. 1999), which is

exactly what our model predicted. These consistencies

between physiological observations and our model predictions

underline the relevance of our model for interpreting neural

response properties.

This is more than just a methodological point because—as

shown here—understanding the difference of results obtained

across techniques is crucial for identifying neurons directly

involved in reference frame transformations: the spatial input

and output properties of these neurons should not match. In

general, when trying to identify a site involved in reference

frame transformations, we should look for an area whose units

show 1) input properties that are relatively weighted toward the

sensory frame, 2) output properties that are relatively weighted

toward the shoulder frame, and 3) gain modulations related to

the relative orientation and location between these 2 frames.

Where can one observe such properties in the existing

literature? Eye position gain fields occur throughout the

parietofrontal network for reach (Andersen et al. 1985; Snyder

2000; Battaglia-Mayer et al. 2001; Buneo and Andersen 2006).

However, our model may help to understand the different and

seemingly contradictory properties seen in some parts of this

system, like PM. It is largely believed that PM encodes

movements in extrinsic coordinates (Kalaska et al. 1997; Kakei

et al. 2001, 2003; Scott 2001). This interpretation is based on

the motor tuning properties (motor fields) of the neurons in

PM and is consistent with a motor plan for the arm in shoulder-

centered coordinates (Boussaoud and Wise 1993; Shen and

Alexander 1997). In these studies, eye and head position were

kept constant, and therefore, no eye/head position effects were

reported for the motor field properties of PM units, consistent

with our model. However, seemingly contradictory to the view

of extrinsic coordinates in PM is the finding that the visual RFs

in PM are modulated by eye position (Boussaoud et al. 1993;

Pesaran et al. 2006). We show here that this is an inherent

property of units in a population that is actively involved in

a visuomotor transformation network. This is also consistent

with current electrophysiological recordings showing eye

position modulations of neural activity in PM (Mushiake et al.

1997; Boussaoud et al. 1998; Jouffrais and Boussaoud 1999;

Cisek and Kalaska 2002). Most interestingly, different reference

frames between gaze- and shoulder-centered coordinates have

recently been reported in PM neurons during visually guided

reaching (Batista et al. 2007), just as predicted by our network.

In an additional analysis (Fig. 11), we were also able to

reproduce recent findings concerning the differences between

neurons in PPC and PM with respect to reference frames

(Pesaran et al. 2006), where PM units displayed relative

position codes (i.e., hand position relative to target position,

consistent with shoulder-centered coordinates), whereas PPC

showed absolute position coding (i.e., of either hand or target

position, consistent with gaze-centered coordinates). Through

analogy with our model, this directly implicates PM in the

visuomotor transformations for 3D reach.

Similar observations arise when comparing visual input

properties and the motor output evoked during electrical

microstimulation. For example, the transformations for large

head-free gaze shifts must deal with a nonlinear transformation

analogous to the one studied here. Gaze-related units in the

supplementary eye fields (SEFs) primarily show eye-centered

visual RFs (Russo and Bruce 1996), but microstimulation of the

SEF revealed coding schemes in multiple effector-based frames

ranging from eye centered to head centered to body centered

(Schlag and Schlag-Rey 1987; Martinez-Trujillo et al. 2004; Park

et al. 2006). This closely agrees with the behavior observed

here in the intermediate and output layers of our network,

except for reach rather than gaze.

When PM is stimulated, complex movements that do not fit

a shoulder-centered reference frame have been evoked

(Graziano et al. 2002). However, the long stimulation trains

used in that study might have resulted in the activation of more

dynamic properties within the PM and motor network that are

beyond motor planning but rather address motor execution

and control (Churchland and Shenoy 2007). Again, as these

areas generally show a simpler eye-centered organization in

their visual input and more complex goal-directed behavior in

their output, the current theoretical framework tends to

implicate them in transformations from sensory to motor space.

General Methodological Implications

Sensory tuning, motor tuning, and microstimulation do not

reveal the same information about individual units, that is, we

have demonstrated that a same unit can have a different

sensory-, motor-, and stimulation-induced reference frame. This
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means that results obtained using different electrophysiological

techniques should be compared with care. For example, in

networks involved in reference frame conversions, these 3

techniques should not provide the same results, not just

because of experimental noise (although this will always be

a confounding factor in neurophysiological experiments) but

because these differences are fundamental to the underlying

mechanism. If the sensory and motor reference frames were

the same, then no reference frame transformation would take

place. One thus expects to find different reference frames

within the same area in the brain when testing with different

techniques. This is crucial, on the one hand, for avoiding

misinterpretation or apparent contradictions between these

techniques and, on the other hand, for capitalizing on the full

potential of such comparisons.

This observation does not only hold true for reference

frames. In general, if a neuron does indeed participate in

a purposeful way in a certain computation, then different input

and output properties must be expected; otherwise, this

neuron would merely transmit information but not transform

it in any way, that is, no computation would be performed.

Therefore, finding different apparent reference frames when

using different probing techniques is not contradictory at all.

Rather, it provides a useful tool to electrophysiologists when

searching for the neural substrates underlying complex

sensorimotor functions. Of course, finding the same input

and output properties does not prove that a particular neuron

is not involved in a computation; such conclusions could only

be drawn from a population analysis.

One important observation was that when probing reference

frames, one has to perform a multivariate analysis. This is

particularly true when one needs to discriminate between

different reference frames in reaching networks. For example,

our analysis in Figure 10 has shown that a unit that displays

tuning shifts with head movements does not necessarily

encode information in a head-centered reference frame. This

observation was striking for RF shifts in the population output

layer (Fig. 10D). There was a large range of RF shift gain

changes related to head movements; however, multivariate

analysis using different combinations of eye and head move-

ments revealed that there was no head-centered representation

present here. Therefore, we stress that in order to perform

discriminations between different potential reference frames

(as long as more than 2 possibilities exist in the system),

a multivariate analysis has to be performed. Failure to do so

would lead to wrong conclusions. For example, if we had only

analyzed head movements in the attempt to discriminate

between shoulder-centered and head-centered reference

frames in the population output layer of our network (Fig.

10D), we would obtain mixed reference frames, intermediate

between head- and shoulder-centered rather than intermediate

between eye and shoulder centered. This is the case because

the head carries the eyes, and thus, only moving the head will

not distinguish between eye- and head-centered reference

frames; hence, the need for a multivariate analysis.

We observed different reference frames when computing

motor fields or simulating microstimulation. For example, the

population output layer encoded movement vectors in mixed

reference frames when probed with motor fields rather than

the shoulder-centered coordinates one might have expected.

In our network, this was the case because there was enough

redundancy so that when the contributions of the population

layer neurons were summed, the resulting movement was still

shoulder centered. In contrast, when simulating microstimula-

tion of an individual population output unit, the unit was not

being driven in its normal fashion by its hidden layer inputs and

responses appear shoulder-centered because the unit is tied

directly to the output. The question then arises, what does the

difference in the results obtained from recording motor fields

and from microstimulation mean? Indeed, both techniques

address the output of a unit and one might expect to find at

least similar if not the same results. However, there are

important conceptual differences in both techniques. First,

motor fields look at the natural contribution of a unit’s activity

to the motor output, whereas microstimulation artificially

produces a motor action. Second, motor fields do not make any

statement about the magnitude of the contribution of a unit to

the motor action because the output is produced by the whole

network. In contrast, microstimulation probes specifically how

a unit (or a group of neurons in the brain) contributes to

action, leaving the rest of the upstream network relatively

unaffected. And third, microstimulation allows inducing unit

activities that are not achieved naturally by the network (in

particular in the real brain where a group of neurons is

activated together), whereas this is not the case when simply

recording natural activity and aligning it with the motor output,

as done to compute motor fields.

The reference frame analysis we used is, in some ways, a very

limited tool to characterize the activity of neurons in the brain

or in our network, and therefore, the usefulness of the ap-

proach could be questioned. Unfortunately, we do not have

a better tool available to date. Describing the apparent frame of

reference of a unit is a particularly valuable technique for

quantitatively describing the response properties of neurons

involved in sensorimotor transformations. The different input--

output relationships then tell us something about the units’

functions and, as such, provide useful information. However,

this does not mean that individual units in a network actually

perform an explicit reference frame transformation. Perhaps,

more importantly, irrespective of the actual meaning of

‘‘intermediate’’ reference frames, we provide qualitative and

quantitative predictions as to what to look for and what to

expect in the real brain when trying to identify areas involved

in reference frame transformations. Therefore, we believe that

our approach to analyze the apparent reference frames of a unit

has practical applications.

Comparison to Previous and Alternative Models

The use of a complete 3D geometric approach in our model is

much more than a trivial extension of previous work using 1D

or 2D geometry because the incorporation of the real nonlinear

3D geometry of this system brings new principles into play that

are not present in linear approximations. For example, we did

not observe a strict alignment of retinal and extraretinal

contributions in the RF shifts of our population output units as

was the case in previous studies (Salinas and Abbott 1995).

Rather, we found that a purely horizontal eye movement could

elicit vertical RF shifts as required to compensate for a tilted

visual input resulting from torsional positions of the eyes and/

or head. Such predictions are not mistakes or oddities, they are

crucial for solving the nonlinear problems mentioned above.

The most notable difference between ours and previous

approaches is that a reach model based on 2D geometry only
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uses translations, whereas the 3D geometry has to deal with the

multiplicative complexity of noncommutative, nonlinear rota-

tions (Pouget and Sejnowski 1997; Tweed et al. 1999), for

example, when both the eyes and head move while their

centers of rotation are not aligned. Furthermore, the 3D

geometry is not only much more realistic (and actually the only

correct approach) but is also particularly important for

computing the distance component of the reach; however,

this analysis is beyond the scope of the present paper and will

be described elsewhere.

In addition, we show that a multivariate analysis is needed in

order to perform correct reference frame discriminations (see

previous section). Another novel observation was that different

methodologies (e.g., RFs, motor fields, and microstimulation)

can give rise to different findings regarding reference frame for

the same unit (see previous section). Finally, we developed

a new way of analyzing neural networks that was only possible

when using a realistic 3D model.

Despite the new properties that emerge in 3D, our network

reproduces many findings that have been reported in previous

algebraic modeling and neural network studies, for example,

a gain-like modulation of unit activity with eye, head, and hand

position (Zipser and Andersen 1988; Brotchie et al. 1995, 2003;

Salinas and Abbott 1995, 2001; Snyder et al. 1997; Xing and

Andersen 2000), purely gaze-centered RFs in the HLUs (Zipser

and Andersen 1988; Xing and Andersen 2000), ‘‘intermediate’’

reference frames (Xing and Andersen 2000)—although these

were only observed when combining inputs encoded in

different reference frames—or shifting RFs in the motor output

layer (Salinas and Abbott 1995). This is despite the fact that we

did not use ‘‘basis function networks,’’ as previously done (e.g.,

Zipser and Andersen 1988; Salinas and Abbott 1995; Pouget and

Sejnowski 1997), that are known to be able to approximate any

nonlinear function (e.g., Buhmann 2003). Whereas in basis

function networks one designs the input sensitivity of a unit,

for example, by specifying how it should respond to targets

presented with respect to a certain portion of space, we left

our network free to come up with its own solution. In doing so,

we avoided combinatorial explosion of the number of HLUs

required as this is the case when using radial basis functions

(Pouget and Snyder 2000); instead, we left it up to the network

to develop the best possible set of ‘‘basis-like’’ functions. The

most noticeable difference in the results obtained was that RFs

never shifted in our network; shifting RFs have, however, been

reported when using radial basis functions (Xing and Andersen

2000), a property that is—however—inconsistent with PPC

data (e.g., Buneo and Andersen 2006). Another observation that

has previously been described was the misalignment of sensory

and motor coordinates, but this has only been done for the

much simpler saccadic eye movement system (Smith and

Crawford 2005). Thus, for the most part, our study does not

negate these previous findings but rather reinforces them by

extending them to 3D, and more importantly, showing why

they must exist in a system that must deal with the real-life

problems of acting in 3D.

For example, whereas the importance of gain fields is

sometimes claimed to be ambiguous for linear 2D approxima-

tions (Colby and Goldberg 1999), they become essential to

solve the complex orientation-dependent sensory--motor rela-

tions seen in 3D space. Indeed, the formal need of gain fields

depends on the way neurons encode position signals. If the

brain used a vector coding scheme, gain fields would not be

needed for 2D visuomotor conversions because linear, additive

operations are sufficient to obtain remapping, updating, or

reference frame translations (Pouget and Sejnowski 1997;

Colby and Goldberg 1999). This consideration has led to doubt

as to whether gain modulations serve reference frame trans-

formations or rather reflect eye/head position--dependent

attentional modulations in areas such as PPC (Colby and

Goldberg 1999). In nonlinear 3D geometry, however, the

vector coding scheme gets into trouble, and we show here that

now the use of gain fields is crucial in order to achieve

reference frame transformations. It is the nonlinear aspect that

requires the use of gain fields, as is also the case for

computations that use basis functions (Salinas and Abbott

1995; Pouget and Sejnowski 1997).

Perhaps the most general theoretical contribution of our

study for the understanding of reach is to show how these

various principles must work in unison to solve the real-world

problems of moving in 3D space. Using the complete 3D

geometry and a new detailed reference frame analysis provides

a unifying framework on how reference frame transformations

can be achieved through fixed transformation modules and

weighted, distributed processing.

Our model is far from complete. Many extensions of our

neural network model are possible and necessary in the future.

Computing with noisy neurons has been shown to add valuable

insight into the potential neural mechanisms of the visuomotor

transformation (Salinas and Abbott 1995; Pouget and Snyder

2000; Deneve et al. 2001). It would also be useful to test more

biologically plausible learning rules and to add proprioceptive

input of the hand position to the model to see how spatial

inputs in different modes are integrated in a neural network.

Adding proprioceptive hand position should not change our

overall findings though because it has been shown that PPC

always encodes hand position in visual coordinates, regardless

of whether the hand is seen or not (Buneo et al. 2002), which

leads to the conclusion that the proprioceptive-to-visual

coordinate transformation may occur before PPC, maybe in

S1 (primary somatosensory area). In addition, adding move-

ment kinetics to the output coding would allow us to address

the transformation of the extrinsic movement plan into

intrinsic muscle activations.

Further Predictions

Using a 3D geometric approach, we attempted to design

a neural network that was physiologically realistic in its input--

output architecture. Based on the relative simplicity of the

emerging features and the many parallels between our findings

and those in the experimental literature, we propose that the

mechanisms that we have observed are not just theoretical

constructs but in fact are fundamental to how the real brain

plans reaches.

In order to test this hypothesis, more experiments are

required. One of the most important would be to provide

direct comparisons between sensory tuning, motor tuning, and

microstimulation results for a single unit/brain site. We predict

that units involved in a reference frame transformation process

will display different reference frames in their input (RF) and

output (motor field, microstimulation) properties. These differ-

ences should be associated with the presence of gain fields

(Andersen et al. 1985; Zipser and Andersen 1988; Salinas and

Abbott 1995). This is true not only for areas involved in the
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visuomotor transformation for reaching. We believe that our

main conclusions are general enough to apply to all reference

frame transformations in the brain (e.g., eye-to-head or multi-

segment transformations along the joints of the arm).

Second, as mentioned earlier, we expect microstimulation

and motor fields to display ‘‘different’’ output properties when

tested with both techniques. The congruence between micro-

stimulation and motor field results might thus give us

indications about the specificity of the contribution of a unit

to a certain task. In contrast, differences might be indicative of

complex computations where many different parameters can

influence the motor field, whereas microstimulation (at least at

high currents) would remain relatively unaffected.

Third, we suggest that microstimulation of PPC units during

feed-forward motor planning should affect the movement in

different reference frames. This is also consistent with trans-

cranial magnetic stimulation and brain lesion studies that show

a variety of reference frames involved in different aspects of the

visuomotor transformation for reaching (Khan et al. 2005,

2007; van Donkelaar and Adams 2005; Vesia et al. 2006).

Our neural network model might also be useful to

investigate how specific brain lesions affect the sensorimotor

transformation. We suggest that virtual lesions induced in such

artificial neural networks could provide valuable insight into

the origin of the deficits of parietal damage patients. For

example, lesions to HLUs with unilateral visual RFs might

produce movement deficits similar to those observed in optic

ataxia patients (Khan et al. 2005, 2007). However, experimental

evidence is needed to specifically address the deficits due to an

internally ‘‘damaged’’ geometrical model for reaching under

different eye--head positions. As previously suggested (Blohm

and Crawford 2007), this model could be used to provide

valuable insights into other visuomotor transformation deficits

related to damage of several parts of the brain. Pathologies of

interest include strabismus, cerebellar damage, motor learning

disorders, Alzheimer’s (or other neurodegenerative diseases),

and vestibular system damage.

The present artificial neural network study is thus much

more than an abstract theoretical investigation of how

reference frame transformations could occur in distributed

processing networks within our brain; rather, we believe it to

be fundamental to better understand the current neurophys-

iological investigations and brain-damaged patients. However, it

is only the first step in modeling the 3D sensorimotor geometry

of reach. Next steps would be to extend this model to include

multisensory (visual, auditory, somatosensory) inputs of target

and hand position, and/or a more complete model of limb

kinematics and dynamics at the output end, simulated using the

real 3D geometry of these systems. This should provide

additional insights into the role of neural networks in

multisensory integration and the inverse kinematics/dynamics

of motor control.

Supplementary Material

Supplementary Methods can be found at: http://www.cercor.

oxfordjournals.org/.
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